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Abstract: We study nonlinear systems of hyperbolic PDE’s in R
d , the hyperbolicity

is understood in a wider sense, namely multiple roots of the characteristic equation
are allowed and dispersive equations are permitted. They describe wave propagation in
dispersive nonlinear media such as, for example, electromagnetic waves in nonlinear
photonic crystals. The initial data is assumed to be a finite sum of wavepackets referred
to as a multi-wavepacket. The wavepackets and the medium nonlinearity are character-
ized by two principal small parameters β and � where: (i) 1

β
is a factor describing spatial

extension of involved wavepackets; (ii) 1
�

is a factor describing the relative magnitude
of the linear part of the evolution equation compared to its nonlinearity. A key element
in our approach is a proper definition of a wavepacket. Remarkably, the introduced
definition has a flexibility sufficient for a wavepacket to preserve its defining properties
under a general nonlinear evolution for long times. In particular, the corresponding wave
vectors and the band numbers of involved wavepackets are “conserved quantities”. We
also prove that the evolution of a multi-wavepacket is described with high accuracy by
a properly constructed system of envelope equations with a universal nonlinearity. The
universal nonlinearity is obtained by a time averaging applied to the original nonlinear-
ity, in simpler cases the averaged system turns into a system of Nonlinear Schrodinger
equations.

1. Introduction

The underlying physical subject of this work is propagation of a multi-wavepacket (a
finite system of wavepackets) in a spatially dispersive and nonlinear medium, and we are
particularly interested in electromagnetic waves propagation in nonlinear photonic crys-
tals, see [4–7,55,56,58] and references therein, with the nonlinear optics constitutive
relations, [12,15, Sects. 1,2, 42,48]. The mathematical subject of interest is the following
general nonlinear evolutionary system
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∂τU = − i

�
L (−i∇)U + F (U), U (r, τ )|τ=0 = h (r), r ∈ R

d , (1)

where (i) U = U (r, τ ), r ∈ R
d , U ∈ C

2J is a 2J dimensional vector; (ii) L (−i∇) is
a linear self-adjoint differential (pseudodifferential) operator with constant coefficients
with the symbol L (k), which is a Hermitian 2J × 2J matrix; (iii) F is a polynomial
nonlinearity such that F (0) = 0, F′ (0) = 0 and F (U) is translation-invariant, i.e. if
TaU (r) = U (r + a) for a ∈ R

d then F (TaU) = TaF (U); (iv) h = h (r) is assumed to
be the sum of a finite number of wavepackets hl , l = 1, . . . , N ; (v) � > 0 is a small
parameter. In the case of nonlinear photonic crystals the components of the vector field
U (r) are the modal amplitudes of the electromagnetic field and the nonlinearity F (U) is
constructed from the nonlinear medium polarization in the adiabatic approximation, [15,
Sects. 2.4.2]. The systems of the form (1) also describe as a particular case well-known
equations, namely: complexification of the Nonlinear Schrodinger equation; coupled
envelope equations which arise in nonlinear birefringent optical media, [41, Sect. 2i];
nonlinear Klein-Gordon and Sine-Gordon equations [61, Sect. 14.1,43, Sect. 5.8.3,44,
Sect. 9.6]. Such equations appear in a number of physical problems: elementary par-
ticles, dislocations in crystals, propagation of Bloch’s domain walls in the theory of
ferromagnetism, self-induced transparency in nonlinear optics, the propagation of mag-
netic flux quanta in long Josephson transmission lines. Significance and importance of
wavepacket solutions from both physical and mathematical points of view is discussed
in [4–7,41, Sect. 2, 55,58].

There are numerous problems involving small parameters only in the initial data
which can be reduced to the form (1), for instance, problems with high frequency initial
data or small initial data with consequent evolution on long time intervals (see Sect. 3
for details).

We study the nonlinear evolution equation (1) on a finite time interval

0 ≤ τ ≤ τ ∗, where τ ∗ > 0 is a fixed number. (2)

The time τ ∗ may depend on the L∞ norm of the initial data h but, importantly, τ ∗ does
not depend on �. We consider classes of initial data such that wave evolution governed by
(1) is significantly nonlinear on the time interval [0, τ ∗] and the effect of the nonlinearity
F (U) does not vanish as � → 0.

Since both the linear operator L (−i∇) and the nonlinearity F (U) are translation
invariant, it is natural and convenient to recast the evolution equation (1) by applying to
it the Fourier transform with respect to the space variables r, namely

∂τ Û (k) = − i

�
L (k) Û (k) + F̂

(
Û
)
(k), Û (k)

∣∣∣
τ=0

= ĥ (k), (3)

where Û (k) is the Fourier transform of U (r), i.e.

Û (k) =
∫

Rd
U (r) e−ir·kdr, U (r) = (2π)−d

∫

Rd
Û (k) eir·kdr, where r,k ∈ R

d ,

(4)
and F̂ is the Fourier form of the nonlinear operator F (U) involving convolutions.

The nonlinear evolution equations (1), (3) are commonly interpreted as describing
wave propagation in a nonlinear medium. We assume that the linear part L (k) is a 2J×2J
Hermitian matrix with eigenvalues ωn,ζ (k) and eigenvectors gn,ζ (k) satisfying

L (k) gn,ζ (k) = ωn,ζ (k) gn,ζ (k), ζ = ±, ωn,+ (k) ≥ 0, ωn,− (k) ≤ 0, n = 1, . . . , J,
(5)
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where ωn,ζ (k) are real-valued, continuous for all non-singular k functions, and vectors
gn,ζ (k) ∈ C

2J have unit length in the standard Euclidean norm. The functions ωn,ζ (k),
n = 1, . . . , J , are called dispersion relations between the frequency ω and the wave-
vector k with n being the band number. We assume that the eigenvalues are naturally
ordered by

ωJ,+ (k) ≥ . . . ≥ ω1,+ (k) ≥ 0 ≥ ω1,− (k) ≥ . . . ≥ ωJ,− (k), (6)

and for almost every k (with respect to the standard Lebesgue measure) the eigenvalues
are distinct and, consequently, the above inequalities become strict. Importantly, we also
assume the following diagonal symmetry condition

ωn,−ζ (−k) = −ωn,ζ (k), ζ = ±, n = 1, . . . , J, (7)

which is naturally present in many physical problems (see also Remark 14 below), and
is a fundamental condition imposed on the matrix L (k). In addition to that in many
examples we also have

gn,ζ (k) = g∗
n,−ζ (−k), where z∗ is complex conjugate to z. (8)

Very often we will use the following abbreviation:

ωn,+ (k) = ωn (k). (9)

From (7) we obtain

ωn,− (k) = −ωn (−k), ωn,ζ (k) = ζωn (ζk), ζ = ±. (10)

We also will often use the orthogonal projection �n,ζ (k) in C
2J onto the complex line

defined by the eigenvector gn,ζ (k), namely

�n,ζ (k) û (k) = ũn,ζ (k) gn,ζ (k) = ûn,ζ (k), n = 1, . . . , J, ζ = ±. (11)

As it is indicated by the title of this paper we study the nonlinear problem (1) for initial
data ĥ in the form of a properly defined wavepacket or, more generally, a sum of wave-
packets which we refer to as multi-wavepacket. The simplest example of a wavepacket
w is provided by the following formula:

w (r, β) = 	+ (βr) eik∗·rgn,+ (k∗), r ∈ R
d , (12)

where k∗ ∈ R
d is a wavepacket wave vector, n is band number, and β > 0 is a small

parameter. We refer to the pair (n,k∗) in (12) as the wavepacket nk-pair. Observe that
the space extension of the wavepacket w (r, β) is proportional to β−1 and it is large for
small β. Notice also that if β → 0 the wavepacket w (r, β) as in (12) tends, up to a con-
stant factor, to the elementary eigenmode eik∗·rgn,ζ (k∗) of the operator L (−i∇) with
the corresponding eigenvalue ωn,ζ (k∗). We refer to wavepackets of the simple form
(12) as simple wavepackets to underline the very special way the parameter β enters its
representation. The function 	ζ (r), which we call the wavepacket envelope, describes
its shape and it can be any scalar complex-valued regular enough function, for example
a function from Schwartz space. Importantly, as β → 0 the L∞ norm of a wavepacket
(12) remains constant, and, hence, nonlinear effects in (1) remain strong.

Evolution of wavepackets in problems which can be reduced to the form (1) were
studied for a variety of equations in numerous physical and mathematical papers, mostly
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by asymptotic expansions with respect to a single small parameter similar to β, see
10,13,18,20,23,29,30,38,47,50,51] and references therein. We are interested in gen-
eral properties of evolutionary systems of the form (1) with wavepacket initial data
which hold for a wide class of nonlinearities and all values of the space dimensions d
of the number 2J of the system components. Our approach is not based on asymptotic
expansions but involves the two small parameters β and � with mild constraints on
their relative smallness. The constraints can be expressed either in the form of certain
inequalities or equalities, and a possible simple form of such a constraint can be a power
law

β = C�κ where C > 0 and κ > 0 are arbitrary constants. (13)

Of course, general features of wavepacket evolution are independent of particular values
of the constant C . In addition to that, some fundamental properties such as wavepac-
ket invariance, are also totally independent of the particular choice of the values of κ

in (13), whereas other properties are independent of κ as it varies in certain intervals.
For instance, dispersion effects are dominant for κ < 1/2, whereas the wavepacket
superposition principle of 7] holds for κ < 1.

The qualitative picture of wavepacket evolution dependence on small β and � is as
follows. The parameter β enters problem (1) through the multi-wavepacket initial data
h (r, β), whereas � enters it through the factor 1

�
before the linear part. Evidently the

factor 1
�

determines the relative magnitude of the linear part compared to the nonlin-

earity and since 1
�

is large, one expects the linear part to provide an important input
into solutions properties. This input includes, in particular, a key role of eigenmodes and
eigenfrequencies (dispersion relations) in expressing the nonlinear evolution. Impor-
tantly, in many cases of interest though 1

�
is large, nonlinear phenomena are significant

and this is the case when β ≤ C�1/2. More precisely, if β ≤ C�1/2 then, as in the case
of finite-dimensional nonlinear ODE evolutionary systems, the large values of 1

�
lead

to a well defined solution factorization into the fast (high frequency) and the slow (low
frequency) components. The interplay between the fast and slow components is also
similar to the ODE case, namely, the nonlinear evolution is associated primarily with
the slow component governed by a nonlinear equation obtained from the original one
by a certain canonical time averaging procedure. Our further analysis of the above men-
tioned interplay shows the following. Firstly, the linear superposition principle holds,
7], that is if κ < 1 is as in (13) and the initial data is a sum of generic wavepackets then
the solution is the sum of the solutions for single involved wavepackets with precision
�

β1+ε with arbitrary small ε. Secondly, properly defined wavepackets and their linear

combinations are preserved under the nonlinear evolution (1), which is a subject of this
paper.

In the light of the above discussion we introduce the slow variable û (k, τ ) by the
formula

Û (k, τ ) = e− iτ
�

L(k)û (k, τ ), (14)

and recast Eq. (3) for it as follows:

∂τ û = e
iτ
�

LF̂
(

e
−iτ
�

Lû
)
, û
∣∣
τ=0 = ĥ. (15)

Then we obtain an integral form of (15) by integrating it with respect to τ :

û = F (û) + ĥ, F (û) = F (�)
(
û
) =

∫ τ

0
e

iτ ′
�

LF̂
(

e
−iτ ′
�

Lû
(
τ ′)
)

dτ ′ (16)
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with an explicitly defined nonlinear polynomial integral operator F (�), which depends
on the parameter �. This operator is bounded uniformly with respect to � in the Banach
space E = C

(
[0, τ ∗] , L1

)
of functions v̂ (k, τ ), 0 ≤ τ ≤ τ ∗, with the norm

∥∥v̂ (k, τ )
∥∥

E = ∥∥v̂ (k, τ )
∥∥

C([0,τ∗],L1)
= sup

0≤τ≤τ∗

∫

Rd

∣∣v̂ (k, τ )∣∣ dk, (17)

where L1 is the Lebesgue space of functions v̂ (k) with the standard norm

∥∥v̂ (·)∥∥L1 =
∫

Rd

∣∣v̂ (k)∣∣ dk. (18)

Sometimes we use more general weighted spaces L1,a with the norm

∥∥v̂
∥∥

L1,a =
∫

Rd
(1 + |k|)a ∣∣v̂ (k)∣∣ dk, a ≥ 0. (19)

A rather elementary existence and uniqueness theorem (Theorem 29) implies that for
a small and, importantly, independent of � constant τ ∗ > 0 this equation has a unique
solution

û (τ ) = G
(
F (�), ĥ

)
(τ ), τ ∈ [0, τ ∗] , û ∈ C1

(
[0, τ ∗] , L1

)
, (20)

where G denotes the solution operator for Eq. (16), the operator depends on operator
F (�), which itself depends on the parameter �. If û (k, τ ) is a solution to Eq. (16) we
call the function U (r, τ ) defined by (14), (4) an F-solution to Eq. (1). We denote by L̂1

the space of functions V (r) such that their Fourier transform V̂ (k) belongs to L1, and

define ‖V‖L̂1 =
∥∥∥V̂
∥∥∥

L1
. Since

‖V‖L∞ ≤ (2π)−d
∥∥∥V̂
∥∥∥

L1
and L̂1 ⊂ L∞, (21)

F-solutions to (1) belong to C1
(

[0, τ ∗] , L̂1
)

⊂ C1 ([0, τ ∗] , L∞).
We would like to define wavepackets in a form which explicitly allows them to be

real valued. This is accomplished based on the symmetry (7) of the dispersion relations
by introduction of a doublet wavepacket

w (r, β) = 	+ (βr) eik∗·rgn,+ (k∗) +	− (βr) e−ik∗·rgn,− (−k∗). (22)

Such a wavepacket is real if 	− (r), gn,− (−k∗) is complex conjugate to 	+ (r), gn,+
(k∗), i.e. if

	− (r) = 	∗
+ (r), gn,+ (k∗) = gn,− (−k∗)∗ . (23)

Considering wavepackets with nk-pair (n,k∗)we usually mean doublet ones as in (22),
but sometimes 	+ or 	− may be zero producing (12).

To identify characteristic properties of a wavepacket suitable for our needs, let us
look at the Fourier transform ŵ (k, β) of an elementary wavepacket w (r, β) defined by
(12), that is

ŵ (k, β) = β−d	̂
(
β−1 (k − k∗)

)
gn,ζ (k∗). (24)

We call such ŵ (k, β) a wavepacket too, obviously it possesses the following properties:
(i) its L1 norm is bounded (in fact, constant), uniformly in β → 0; (ii) for every ε > 0
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the value ŵ (k, β) → 0 for every k outside a β1−ε-neighborhood of k∗, and the conver-
gence is faster than any power of β if 	 is a Schwartz function. To explicitly interpret
the last property we introduce a cutoff function � (η),

� (η) = 1 for |η| ≤ 1, � (η) = 0 for |η| > 1, (25)

together with its shifted/rescaled modification

� (k; k∗) = �
(

k; k∗, β1−ε) = �
(
β−(1−ε) (k − k∗)

)
. (26)

If in an elementary wavepacket w (r, β) defined by (24) 	ζ (r) is a Schwartz function
then ∥∥∥

(
1 −�

(
·,k∗, β1−ε)) ŵ (·, β)

∥∥∥ ≤ Cε,sβ
s, 0 < β ≤ 1,

which holds for arbitrarily small ε > 0 and arbitrarily large s > 0. Based on the above
discussion we give the following definition of a wavepacket which is a minor variation
of 7, Def. 8].

Definition 1 (Single-band wavepacket). Let 0 < ε < 1 be a fixed number. For a given
band number n ∈ {1, . . . , J } and a wavevector k∗ ∈ R

d , a function ĥ (β,k) is called
a wavepacket with nk-pair (n,k∗) and the degree of regularity s > 0 if there exists
such β0 > 0 that for β < β0 the following conditions are satisfied: (i) ĥ (β,k) is
L1-bounded uniformly in β, i.e.

∥∥∥ĥ (β, ·)
∥∥∥

L1
≤ C, 0 < β < β0 for some C > 0; (27)

(ii) ĥ (β,k) has the following structure:

ĥ (β,k) = ĥ− (β,k) + ĥ+ (β,k) + D̂h, 0 < β < β0, where (28)

ĥζ (β,k) = �
(

k, ζk∗, β1−ε)�n,ζ (k) ĥζ (β,k), ζ = ±, (29)

with �
(·, ζk∗, β1−ε) defined by (26) and D̂h satisfying the following tail estimate:

∥∥∥D̂h

∥∥∥
L1

≤ C ′βs, 0 < β < β0 for some C ′ > 0. (30)

The inverse Fourier transform h (β, r) of a wavepacket ĥ (β,k) is also called a
wavepacket.

Point (ii) of the above definition means that the wavepacket ĥ (β,k) is composed of
two functions ĥζ (β,k), ζ = ±, which take values the in the nth band eigenspace of
L (k) and are localized near ζk∗, where (n,k∗) is the nk-pair of the wavepacket. The
number β0 usually is small and may depend on a wavepacket.

Evidently, if a wavepacket has the degree of regularity s, it also has a smaller degree
of regularity s′ ≤ s with the same ε. Observe that the degree of regularity s is related to
the smoothness of 	ζ (r) in (12) so that the higher the smoothness is the higher s

ε
can

be taken. Namely, if 	̂ζ ∈ L1,a then one can take any s
ε
< a, see Lemma 52 below. For

example, if in the elementary wavepacket w (r, β) defined by (12)	ζ (r) is a Schwartz
function then it has arbitrarily large degree of regularity.
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Remarkably it turns out that wavepackets satisfying Definition 1 preserve their defin-
ing properties under nonlinear evolution. It is remarkable, in particular, since it is well-
known that determination of classes of solutions which preserve their form under generic
nonlinear evolution usually leads to infinite expansions, such as multi-scale expansions,
power expansions, modal expansions, etc. with serious difficulties in establishing the
convergence. Such expansions often are formally invariant, but they involve infinitely
many rather complex terms and establishing the convergence is a very hard problem
indeed if there is any convergence at all. Our Definition 1 of a wavepacket involves
only a finite number of terms and its invariance is provided by the flexible tail term D̂h .
We also find remarkable the very simplicity of the definition which nevetherless allows
for a sufficiently detailed analysis of the dynamics, including, in particular, rigorously
justified NLS-type approximations of wavepacket dynamics presented in the following
sections.

Our special interest is in waves that are finite sums of wavepackets and we refer to
them as multi-wavepackets.

Definition 2 (Multi-wavepacket). Let S be a set of nk-pairs:

S ={(nl ,k∗l), l = 1, . . . , N } ⊂ �={1, . . . , J }×R
d , (nl ,k∗l) �= (nl ′ ,k∗l ′) for l �= l ′,

(31)
and N = |S| be their number. Let KS be a set consisting of all different wavevectors k∗l
involved in S with |KS| ≤ N being the number of its elements. KS is called wavepacket
k-spectrum and without loss of genericity we assume the indexing of elements in S to
be such that

KS = {k∗i , i = 1, . . . , |KS|} , i.e. li = i for 1 ≤ i ≤ |KS| . (32)

A function ĥ (β) = ĥ (β,k) is called a multi-wavepacket with nk-spectrum S if it is a
finite sum of wavepackets, namely

ĥ (β,k) =
N∑

l=1

ĥl (β,k), 0 < β < β0 for some β0 > 0, (33)

where ĥl , l = 1, . . . , N, is a wavepacket with nk -pair (nl ,k∗l) ∈ S as in Definition 1.

Note that if ĥ (β,k) is a wavepacket then ĥ (β,k) + O (βs) is a wavepacket as well
with the same nk-spectrum, and the same is true for multi-wavepackets. Hence, we can
introduce a multi-wavepackets equivalence relation “�” of degree s by

ĥ1 (β,k) � ĥ2 (β,k) if
∥∥∥ĥ1 (β,k)− ĥ2 (β,k)

∥∥∥
L1

≤ Cβs for some constant C > 0.

(34)
Observe also that zero functions are (trivial) wavepackets for any given (n, k)-spectrum.
A wavepacket with any pair (n, k) is equivalent to zero if its L1 norm is bounded by βs,
and such trivial components of two equivalent wavepackets are excluded; the remaining
sets of elements (nl ,k∗l) of spectra of two equivalent wavepackets must coincide.

Let us turn now to the abstract nonlinear problem (16) where (i) F = F (�) depends
on � and (ii) the initial data ĥ = ĥ (β) is a multi-wavepacket depending on β. We
would like to state our first theorem on multi-wavepacket preservation under the evo-
lution (16) for β, � → 0, which holds, as it turns out, provided its nk-spectrum S
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satisfies a certain natural condition called resonance invariance. This condition is inti-
mately related to the so-called phase and frequency matching conditions for stronger
nonlinear interactions, and its concise formulation is as follows. We define for given
dispersion relations {ωn (k)} and any finite set S ⊂ {1, . . . , J } × R

d another finite set
R (S) ⊂ {1, . . . , J } × R

d , where R is a certain algebraic operation described in Defi-
nition 18 below. It turns out that for any S always S ⊆ R (S) but if, in fact, R (S) = S
we call S resonance invariant. The condition of resonance invariance is instrumental
for the multi-wavepacket preservation, and there are examples showing that if it fails,
i.e. R (S) �= S, the wavepacket preservation does not hold. Importantly, the resonance
invariance R (S) = S allows resonances inside the multi-wavepacket, that includes, in
particular, resonances associated with the second and the third harmonic generations,
resonant four-wave interaction, etc.

Theorem 3 (Multi-wavepacket preservation). Suppose that the nonlinear evolution
is governed by (16) and the initial data ĥ = ĥ (β,k) is a multi-wavepacket with
nk-spectrum S and the regularity degree s, and assume S to be resonance invariant
(see Definition 18 below). Let dependence between parametrs � and β be any function
� = ρ (β) satisfying

0 < ρ (β) ≤ Cβs, for some constant C > 0, (35)

and let us set � = ρ (β). Then the solution û (τ , β) = G
(
F (ρ (β)), ĥ (β)

)
(τ ) to (16)

for any τ ∈ [0, τ ∗] is a multi-wavepacket with nk-spectrum S and the regularity degree
s, i.e.

û (τ , β; k) =
N∑

l=1

ûl (τ , β; k), where ûl is wavepacket with nk-pair (nl ,k∗l) ∈ S.

(36)
The time interval length τ ∗ > 0 depends only on L1-norms of ĥl (β,k) and N. The
presentation (36) is unique up to the equivalence (34).

The above statement can be interpreted as follows. Modes in nk-spectrum S are
always resonance coupled with modes in R (S) through the nonlinear interactions, but if
R (S) = S then (i) all resonance interactions occur inside S and (ii) only a small vicinity
of S is involved in nonlinear interactions leading to the multi-wavepacket preservation.

Many nonlinear evolution problems with small initial data can be readily reduced by
elementary rescaling to the system (1) with a large parameter 1

�
before its linear part.

For example, suppose that F (V) is a homogeneous nonlinearity of degree m (m = 3 for
a cubic one) and that the nonlinear evolution is governed by

∂t V = −iL (−i∇)V + F (V), V (r, t)|t=0 = �1/(m−1)h (r), r ∈ R
d , (37)

considered for small � on the large time interval 0 ≤ t ≤ τ∗
�

with a fixed τ ∗ > 0. Then
the following simple change of variables:

V (t) = �1/(m−1)U (τ ), τ = t� (38)

transforms the problem (37) into the equivalent problem (1). In this case the inequality
(35) describes a constraint between the spatial extension 1

β
and the amplitude factor

�1/(m−1) = ρ (β)1/(m−1) of the initial data. Observe that Eq. (37) does not have any
small parameters and both small parameters � and β enter the problem through its initial
data. Theorem 3 can be restated for problem (37) as follows:
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Corollary 4 (Multi-wavepacket preservation). Let V (r, t) be a solution to the nonlin-
ear system (37), ρ (β) is as in (35) and we set � = ρ (β). Then if the initial data is such
that �−1/(m−1)V̂ (k, 0) = ĥ (k) is a multi-wavepacket, then �−1/(m−1)V̂ (k, t) remains
as a multi-wavepacket with the same nk-spectrum and the degree of regularity for all

times t ∈
[
0, τ∗

�

]
.

The statements of Theorems 3 and Corollary 4 directly follow from the following
general theorem which makes no assumptions on the relations between β, � → 0.

Theorem 5 (Multi-wavepacket approximation). Let the initial data ĥ in the integral
equation (16) be a multi-wavepacket ĥ (β,k) with nk-spectrum S as in (31), the reg-
ularity degree s and with the parameter ε > 0 as in Definition 1. Assume that S is
resonance invariant in the sense of Definition 18 below. Let the cutoff function� (k,k∗)
and the eigenvector projectors �n,± (k) be defined by (26) and (11) respectively. For a
solution û of (16) we set

ûl (τ , β; k) =
⎡
⎣∑
ζ=±

� (k, ζk∗l)�nl ,ζ (k)

⎤
⎦ û (τ , β; k), l = 1, . . . , N . (39)

Then every such ûl (k; τ , β) is a wavepacket and

sup
0≤τ≤τ∗

∥∥∥∥∥û (τ , β; k)−
N∑

l=1

ûl (τ , β; k)

∥∥∥∥∥
L1

≤ C1� + C2β
s, (40)

where the constant C1 does not depend on ε, s and β, and the constant C2 does not
depend on β.

It is interesting to note that the statement of Theorem 5 can be extended to the special
limit case β = 0, k∗l = 0. In this case the initial data of (1) are constants in r and we can
consider solutions U (1) which do not depend on r. Then ∇U = 0, the linear operator
L (−i∇) reduces to the multiplication by a matrix L0 = L (0) and the system (1) turns
into a system of ordinary differential equations (ODE). Notice that (i) the structure of
the eigenvalues (7) implies that the linear part is time-reversible; (ii) the nonlinear part
can be an arbitrary polynomial. The extension of Theorem 5 to this case (see Theorem
11) reads that in a generic, non-resonant situation if initial data are bounded and a set of
eigenmodes of the matrix L0 is excited at τ = 0, then in the course of evolution on a time
interval [0, τ ∗] where τ ∗ depends on magnitude of initial data: (i) all remaining modes
remain unexcited with accuracy proportional to �, and (ii) only the originally excited
modes can significantly evolve with this level of accuracy. For finite-dimensional systems
governed by ODE’s such a statement can be derived from the classical time-averaging
principle and the time-averaged equations remain nonlinear. For infinitely-dimensional
systems governed by PDE and with the linear operator having a continuous spectrum, as
in Theorem 5, the analysis is more complex but the time-averaging still plays an impor-
tant role yielding an accurate approximation governed by a certain universal nonlinear
PDE.

We would like to point out also that though Theorem 3 is a simple corollary of the
more general Theorem 5, it is important that the statement (40) can be formulated as
multi-wavepacket invariance. That, in particular, allows to take values û (τ ∗) as new
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wavepacket initial data for (1) and extend the wavepacket invariance of a solution to
the next time interval τ ∗ ≤ τ ≤ τ ∗1. This observation allows to extend the wavepac-
ket invariance to larger values of τ (up to blow-up time or infinity) if some additional
information about solutions with wavepacket initial data is available. In particular, the
following theorem holds.

Theorem 6. Assume that all conditions of Theorem 3 are satisfied and, in addition to that,
solutions û (τ , β) of (16) with the multi-wavepacket initial data ĥ (β) and� = ρ (β) exist
on an interval 0 ≤ τ < τ 0, τ 0 ≤ ∞, and the estimate

∥∥û (·, β)∥∥C([0,τ 1],L1)
≤ R (τ 1)

holds for any τ 1 < τ 0, where R (τ 1) does not depend on β ≤ β0. Then the solution

û (τ , β) = G
(
F (ρ (β)), ĥ (β)

)
(τ ) to (16) for any τ < τ 0 is a multi-wavepacket with

nk-spectrum S and the regularity degree s, that is (36) holds.

The derivation of the above statement from Theorem 3 is straightforward with the
following key points. The interval τ ∗ in Theorem 3 depends only on the L1- norm of
initial data and the solution û (τ , β) is assumed to be bounded in L1 by R (τ ) ≤ R (T )
for 0 ≤ τ ≤ T for any T < τ 0. Therefore, we can apply Theorem 3 consecutively
on intervals [nτ ∗, (n + 1) τ ∗] for all integers n such that 0 ≤ nτ ∗ ≤ T and conclude
that if û (τ , β) is a wavepacket for τ = nτ ∗ it remains to be a wavepacket for τ ∈
[nτ ∗, (n + 1) τ ∗]. Note that parameters β0 and C ′ in Definition 1 may depend on a
wavepacket and be different for different wavepackets. Importantly, τ ∗ in the statement
of Theorem 5 does not depend on β0 and C ′. Since for any fixed T < τ 0 we can apply
Theorem 3 a finite number of times the solution û (τ ) is a wavepacket on the interval
[0, T ] if T < τ 0 (with some parameters β0 (T ) > 0 and C ′ (T ) < ∞).

Note that the wavepacket form of solutions can be used to obtain long-time esti-
mates of solutions. Namely, very often behavior of every single wavepacket is well
approximated by its own nonlinear Schrodinger equation (NLS), see 17,34,18,23,30,
31,47,50,51,53] and references therein, see also Sect. 6. Many features of the dynamics
governed by NLS-type equations are well-understood, see 14,16,32,49,57,59] and ref-
erences therein. These results can be used to obtain long-time estimates for every single
wavepacket (as, for example, in 31]) and, with the help of the superposition principle,
for the multiwavepacket solution.

The wavepacket representation (36) from Theorem 3 can be used for more detailed
analysis of dynamics of wavepackets ûl (τ , β) and interaction between them. The fol-
lowing theorem illustrates that by describing wavepacket interaction based on a system
with a weakly universal nonlinearity similar to so-called coupled modes systems or NLS.

Theorem 7 (NLS-type approximation). Let the conditions of Theorem 5 hold and, in
addition to that, the initial data ĥl (k) are of the form ĥl = ĥl,+ + ĥl,− + D̂l , where

ĥl,ζ (k) = β−d Ĥl,ζ

(
β−1 (k − ζk∗l)

)
gnl ,ζ (k) for |k − k∗l | ≤ β1−ε, ζ = ±,

D̂l satisfies (30), and every function Ĥl,ζ (η), which may depend on β, is defined for all
η and is bounded in L1,a with a > s

ε
uniformly in β. Then one can write a nonlinear

system of differential equations for 2N scalar envelope functions zl,ζ (τ , r) with the
initial data Hl,ζ , a linear part of the system has order µ ≤ 3 and the nonlinearity is
weakly universal as in (238) and has order ν ≤ 1. Let ẑl,ζ (τ ,k), l = 1, . . . , N, be the
Fourier transform of a solution to this system. Then there exist β0 > 0 and a constant
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C which does not depend on β, � such that for β ≤ β0 the solution û of (16) with initial
data ĥ can be approximated as follows:

N∑
l=1

∥∥∥ûl (τ , β)− β−d ẑl,ζ

(
τ , β−1 (· − k∗l)

)
gnl ,ζ

∥∥∥
E

≤ C

[
� +

β(µ+1)(1−ε)

�
+ β(ν+1)(1−ε) + βs

]
. (41)

The above-mentioned system with a weakly universal nonlinearity is constructed
based on Eq. (1) and nk-spectrum S with the help of time averaging (70) described
below. Note that in the simplest case when µ = 2, ν = 0, N = 1 (and J is arbitrary)
the resulting system with a universal nonlinearity is equivalent to the classical Nonlin-
ear Schrodinger equation (NLS). If N = 2 and k∗1 = −k∗2 we obtain the well-known
coupled modes system for counterpropagating waves. This theorem applied to particular
systems implies approximation theorems similar to results of (i) 30,53,6,23] on NLS
approximation; (ii) 6,24,47,52] on coupled mode approximation; (iii) 54] on three-wave
approximations. Note also that (41) implies that if � = βκ

′
with 1 < κ

′ < 2, then both
the first order hyperbolic equations (µ = 1, ν = 0) and the second-order NLS (µ = 2,
ν = 0) provide an approximation for a solution û of (16), but NLS provides a bet-

ter approximation O
(
β(1−ε)) compared with O

(
β2(1−ε)−κ

′)
for first order hyperbolic

equations.
Observe that in the form (22) for a simple wavepacket we require gn,± (k∗) to be

an eigenvector of the Hermitian matrix L (k∗), and one can wonder if gn,± (k∗) can be
replaced with an arbitrary pair of vectors g± in the case J > 1. The answer is affirmative,
since one can always expand any g with respect to the basis gn,± (k) using �n,± (k),
but the result will be a multi-wavepacket with up to 2J components rather than a single
wavepacket.

The rest of the paper is organized as follows. In the next section we illustrate important
points of parameter dependence and wavepacket preservation based on examples. In
Sect. 3 we formulate conditions of wavepacket preservation including the key resonance
invariance condition. In Sect. 4 we provide examples of different forms of equations
and systems which involve small or large parameters and can be written in the form
of (1) after a rescaling. In Sect. 5 we introduce and discuss integrated modal forms of
the evolution equation. In Sect. 6 we introduce and study the wavepacket interaction
system in its relation to the original system. In Sect. 7 we approximate the wavepacket
interaction system by a certain minimal wavepacket interaction system, which in the
simplest cases turns into the NLS or the coupled modes system.

2. Preliminary Discussion and Examples

Observe that the multi-wavepacket preservation as described in Theorems 3-7 states in
different forms that (i) its modal composition is essentially preserved; (ii) its nk-spectrum
(the set of nk-pairs {k∗l , nl}) remains the same at all times; (iii) no new modes are excited
with good accuracy as a result of the nonlinear evolution. The preservation of multi-
wavepackets as they evolve shows also that only the nonlinear interactions between
small neighborhoods of points (k∗l , nl) are essential and contribute constructively to
the nonlinear dynamics, whereas the amplitudes of modes with wavevectors k outside
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those neighborhoods is vanishingly small as β, � → 0. The latter is quite remarkable

since the coupling term F̂
(

Û
)
(k) in (3) for such k is not small. A qualitative explanation

to that, confirmed by rigorous analysis, is based on a fact that the contribution of this
term to the solution is a time integral involving highly oscillatory functions that becomes
vanishingly small as β, � → 0. This mechanism is similar to the classical averaging
mechanism for systems of ordinary differential equations described, for instance, in 11];
the relevance of the averaging mechanism for long-wave asymptotics for hyperbolic
systems of PDE is well-known, see 30].

We would like to relate now the multi-wavepacket preservation property to the linear
superposition for wavepackets established in 7]. According to that principle if the initial
state h =

∑
hl , with hl , l = 1, . . . , N being “generic” wavepackets, then the solution

û (τ ) = G (h) (τ ) to the evolution equation (15) equals with high accuracy the sum of
individual solutions ul of N equations with respective initial data hl . Namely, if β, � > 0
satisfy the following relation:

β, � → 0, β ≥ C1� with some C1 > 0, (42)

then for all times 0 ≤ τ ≤ τ ∗ we have

G
(

N∑
l=1

wl

)
(τ ) =

N∑
l=1

G (wl) (τ ) + D (τ ), (43)

‖D (τ )‖E = sup
0≤τ≤τ∗

‖D (τ )‖L∞ ≤ Cε
�

β1+ε + Cβ for any ε > 0. (44)

The linear superposition principle is formulated in 7] for β = C2�
1/2, but, in fact, the

provided proofs of (43), (44) remain valid as long as (42) holds. Obviously, the bound
β ≥ C1� in (42) determines when (44) becomes trivial. This bound is sharp and exam-
ples below show that when β ∼ � the remainder D (τ ) in (43) does not tend to zero
when β → 0.

Both the multi-wavepacket preservation and the linear superposition apply to sums of
generic wavepackets. It is important to notice though that the multi-wavepacket preser-
vation holds for any dependence between � andβ which satisfy (35), that is � (β) ≤ Cβq

with arbitrary small q whereas the linear superposition holds if � (β) ≤ Cβ. Thus, the
bounds (42) on β determine the range of its values for which both multi-wavepacket
preservation and linear superposition hold simultaneously (provided some genericity
conditions are satisfied). In this range wavepacket preservation provides additional
information on behavior of solutions with single wavepacket initial data, namely that
the solution remains a single wavepacket. Obviously, the linear superposition principle
does not follow from multi-wavepacket invariance. Below we use simple examples and
models to discuss different ranges of parameters � and β where wavepacket preservation
is valid but the solutions of equations exhibit different behavior.

2.1. A model with explicit solutions and the effect of large group velocity. Here we
introduce a simple model for our general system (1) with elementary solutions which
makes explicit that in the limit � → 0 nonlinear effects do not vanish, in particular the
blow-up time does not tend to infinity. This example also shows that on the time scale
where τ is of order 1 solutions undergo significant nonlinear evolution. The influence
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of � on solutions through the group velocity in this example can be seen explicitly. The
model is the following system of two coupled nonlinear first order hyperbolic equations
for variables u1 (x, τ ), u2 (x, τ ) with one-dimensional spatial variable x :

∂τu1 = −c1

�
∂x u1 + F1 (u1, u2), (45)

∂τu2 = −c2

�
∂x u2 + F2 (u1, u2), c1 �= c2, u1|τ=0 = h1 (x), u2|τ=0 = h2 (x),

(46)

where the initial data h1, h2 in (46) are of wavepacket form:

h1 (x) = 	1 (βx) cos k1∗x, h2 (x) = 	2 (βx) cos k2∗x, |k1∗| �= |k2∗| . (47)

We take the nonlinearity to be quadratic and of the following simple form:

F1 (u1, u2) = u2
1 + a1u1u2, F2 (u1, u2) = u2

2 + a2u1u2. (48)

The system (45)–(47) allows for an explicit form of solutions with one-wavepacket ini-
tial data, describing a wave propagating with a constant speed controlled by the linear
part and with a shape evolution controlled by the nonlinearity. This simplest case is com-
pared then with the case of two-wavepacket initial data, for which an explicit solution
is not available.

In the case when h2 = 0 the second equation has trivial solution u2 = 0 and the
system (45)–(46) reduces to a single equation (45). The solution to this equation has the

form of a traveling wave v1

(
x − c1

�
τ , τ

)
, where v1 (y, τ ) is a solution of the ordinary

differential equation

∂τ v1 = F1 (v1, 0), v1 (y, 0) = h1 (y). (49)

The explicit formula in the case (49) yields

v1 (x, τ ) =
h1

(
x − c1τ

�

)

1 − τh1

(
x − c1τ

�

) =
	1

(
β
(

x − c1τ
�

))
cos k1∗β

(
x − c1τ

�

)

1 − τ	1

(
β
(

x − c1τ
�

))
cos k1∗β

(
x − c1τ

�

)

(50)
for a time interval 0 ≤ τ < τ 0, where τ 0 = 1

supy |h1(y)| is the blow-up time. Obviously,

the blow-up time does not depend on �. Consequently, the wave propagates with the
velocity c1

�
with its shape evolution being controlled by the nonlinearity. Similarly,

when h1 = 0 the first equation has the trivial solution u1 = 0 and the system (45)–(46)
reduces to a single equation (46) which has a solution in the form of a traveling wave

v2

(
x − c2

�
τ , τ

)
propagating with the velocity c2

�
. Observe that for the simple model

(45)–(47) the group velocity coincides with the velocity of a traveling wave.
The above model is not exactly solvable if both initial conditions h1 and h2 do not

vanish. But one can still see the way � influences the nonlinear dynamics quite explicitly
by applying the superposition principle from 6]. Indeed, let us assume that h1 and h2
are two nonzero initial wavepackets. Then the approximate superposition principle is
applicable (in order to put the system in the framework of 6] we use the 4-component
extension (115) and set � = βκ

′
, κ

′ > 1). According to the principle the exact solution
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(u1, u2) is approximated by
(
v1

(
x − c1

�
τ , τ

)
, v2

(
x − c2

�
τ , τ

))
, which is explicitly

given by (50) with the accuracy O
(

�

β1+ε

)
= O

(
βκ

′−1−ε
)

with arbitrary small ε if

c1 �= c2. As it as shown in 6] the validity of such an approximate presentation is due to
the large difference c1−c2

�
of the group velocities of two wavepackets.

2.2. Dispersive effects and nonlinearity. Based on an elementary example of the
Nonlinear Schrodinger equation (NLS),

∂τu = − i

�

[
γ 0u + iγ 1∂x u + γ 2∂

2
x u
]

+ b1 |u|2 u, u = u (x, τ ), x ∈ R (51)

with the initial data in the form of a wavepacket u|τ=0 = 	(βx) eik∗x , we would like
to explain here why we are interested mostly in the case

�

β2 ≥ C > 0, (52)

when the dispersion is not dominant. To make the dependence of u on β and � explicit
we change the variables

u (x) = v (βx) eik∗x , βx = z, (53)

and obtain the equation

∂τ v = − i

�

[
γ ′

0v + iβγ ′
1∂zv + γ 2β

2∂2
z v1

]
+ b |v|2 v, v|τ=0 = 	(z), (54)

where γ ′
1 = γ 1/β + 2γ 2k∗. Changing variables once more,

v (z, τ ) = e− iτ
�
γ ′

0w

(
z +

β

�
γ ′

1τ , τ

)
, z +

β

�
γ ′

1τ = y, (55)

we obtain for the envelope w the following standard NLS equation:

∂τw = − iβ2

�
γ 2∂

2
yw + b |w|2 w, w|τ=0 = 	(y), 0 ≤ τ ≤ τ ∗, (56)

with initial data independent of the parameters β, �. The behavior of the solution w to

Eq. (56) on the time interval 0 ≤ τ ≤ τ ∗ is determined by the dispersion parameter β
2

�
,

and evidently linear dispersive effects become significant when �

β2 is not too large. If

β2

�
→ ∞ and β → 0, the solution tends to zero at every fixed τ = τ 0 > 0. Indeed,

if we take � = βκ
′
, κ

′ > 2, and make another change of variables τ = tβκ
′−2,

w = β1−κ
′/2W , Eq. (56) reduces to the following problem with small initial data:

∂t W = −iγ 2∂
2
y W + b |W |2 W, W |t=0 = βκ

′/2−1	(y). (57)

For small enough β the solution W to this problem exists for all t and W (t) → 0 as
t → ∞ (see 16]). In particular, for t = τ 0β

2−κ
′

we have w (τ 0) → 0 when β → 0.
In the general case, the solution dependence on smallβ, � is as follows. The dependence

on large 1
�

in (51) is completely described by the change of variables (55), yielding a



Wavepacket Preservation Under Nonlinear Evolution 343

wave which (i) moves as a whole with a large group velocity
−γ ′

1
�

; (ii) has a slowly
evolving shape as described by v and w in (53), (55), (56).

The above observations show that for small �

β2 the dispersive effects dominate and

control the nonlinear ones. Keeping that in mind and being interested in stronger nonlin-
ear effects we focus primarily on the case (52), i.e. �

β2 ≥ C > 0, for which there are two

scenarios of the nonlinear evolution. In the first scenario, when β2

�
→ 0, the linear dis-

persion produces only a small correction to the solution of the equation ∂τw = b |w|2 w
with that nonlinear equation governing the nonlinear dynamics of the envelopew for τ ∗
being smaller than the blow-up time. In the second scenario, when β2 ∼ �, Eq. (56)
becomes independent of β, � and describes the evolution of the envelopew governed by
an interplay between the dispersion and the nonlinearity. The case β2 ∼ � can be also
characterized as one where dispersive effects do occur but they don’t dominate nonlin-
ear effects, and, as it is well known, the dispersion can exactly balance the nonlinearity
yielding solitons.

2.3. A coupled modes system. Here we illustrate statements of the general theorem on
the wavepacket preservation and the approximate superposition principle by a simple
but still nontrivial example. Let us consider a system of two coupled NLS type equations
for variables u1 (x, τ ), u2 (x, τ ) with one-dimensional spatial variable x ,

∂τu1 = − i

�

[
γ 01 + iγ 11∂x + γ 21∂

2
x

]
u1 +

(
b11 |u1|2 + b12 |u2|2

)
u1 + c12 |u2|2 u2,

(58)

∂τu2 = − i

�

[
γ 02 + iγ 12∂x + γ 22∂

2
x

]
u2 +

(
b21 |u1|2 + b22 |u2|2

)
u2 + c22 |u1|2 u1,

(59)

u1|τ=0 = h1 (x) = 	1 (βx) eik∗1x , u2|τ=0 = h2 (x) = 	2 (βx) eik∗2x , (60)

where γ i j are real and bi j are complex coefficients and the initial data in (60) are in the
form of wavepackets with	 j (y) being Schwartz functions. Notice that if in the coupled
modes system (58)–(60) h2 = 0 and c12 = c22 = 0, then it has trivial solution u2 = 0,
and reduces to a single NLS equation of the form (51). The dependence of the solution
{u1, u2} on the large 1

�
is captured by the change of variables (55). Namely, u1 is a wave

with a slowly varying envelope described by v1 which moves with large velocity
−γ ′

11
�

.
The dependence on β is of the form v1 (y, τ ) = w1 (β y, τ ) (see the following subsection
for details). Similarly we can consider the case when h1 = 0 for which the first equation
has trivial solution u1 = 0, so the system (58)–(59) reduces to a single equation (59)
with the solution represented by a wave having large spacial extension proportional to
1
β

and moving with the large velocity
−γ ′

12
�

.

2.3.1. The superposition principle. Let us assume here that h1 �= 0, h2 �= 0, c12 �= 0,
c22 �= 0 and β = �κ, 0 < κ < 1. Applying the superposition principle we obtain for
generic k∗1, k∗2 the following representation of the exact solution:

u1 (x, τ ) = v1 (x, τ ) eik∗1x + D1, u2 (x, τ ) = v2 (x, τ ) eik∗2x + D2,
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where v1 (x, τ ) is a solution of the NLS equation (58) with b12 = c12 = 0, with v2 (x, τ )
being a solution to a similar decoupled NLS equation for b22 = c22 = 0, and D1 and
D2 are small terms satisfying

sup0≤τ≤τ∗ ‖D1 (·, τ )‖L∞ + sup0≤τ≤τ∗ ‖D2 (·, τ )‖L∞ ≤ Cβκ
′−1−ε + Cβ, κ

′ = κ
−1.

(61)
We would like to emphasize here that the coupling terms b12 |u2|2 u1 + c12 |u2|2 u2 and
b21 |u1|2 u2 + c22 |u2|2 u2 in Eq. (58)–(59) are not small whereas their ultimate contri-
butions to the solutions are small. One can explain/interpret that phenomenon as being
due to the destructive wave interference and mismatch of group velocities.

2.3.2. Wavepacket preservation. Here we assume that h1 �= 0, h2 = 0, c12 �= 0, c22 �= 0
and � = βκ

′
, 0 < κ

′ ≤ 2. According to the wavepacket preservation we have

u1 (x, τ ) = v1 (x, τ ) eik∗1x + D1, u2 (x, τ ) = D1,

where v1 (x, τ ) is a solution of (58) with b12 = 0 , c12 = 0, and D1 and D2 are small
terms satisfying

sup0≤τ≤τ∗ ‖D1 (·, τ )‖L∞ + sup0≤τ≤τ∗ ‖D2 (·, τ )‖L∞ ≤ C�.

Notice once more (see the above section) an interesting phenomenon: Eq. (59) for
u2 (x, τ ) has a coupling term b21 |u1|2 u2 + c22 |u1|2 u1 which does not become small as
β, � → 0, but, remarkably, its ultimate contribution to the solution is small.

2.3.3. Limitations of the superposition principle. Now we provide an example based on
the system (58)–(60) with c12 = c22 = 0 showing that the above estimate (61) in the
superposition principle is sharp in the sense that βκ

′−1−ε cannot be replaced by βκ
′−1+ε

with κ
′ ≥ 1. We set here κ

′ = 1 and � = β. After the change of variables (53) for u1, u2

followed by yet another change of variables βx = z, v1 = e−iτ
γ ′

01
β w1, v2 = e−iτ

γ ′
01
β w2,

we obtain from (58)–(60) the following system:

∂τw1 = −i
[
iγ ′

11∂zw1 + βγ 21∂
2
zw1

]
+
(

b11 |w1|2 + b12 |w2|2
)
w1,

∂τw2 = −i
[
iγ ′

12∂zw2 + βγ 22∂
2
zw2

]
+
(

b21 |w1|2 + b22 |w2|2
)
w2,

w1|τ=0 = 	1 (z), w2|τ=0 = 	2 (z).

This system has a regular dependence on β as β → 0 with the solution converging in L∞
to the solution of the system with β = 0. If we set now in the last system b12 = b21 = 0 it
turns into a system of two decoupled equations. Notice then that the difference between
the solutions of the decoupled system and the original one does not tend to zero as
β → 0, implying that the superposition principle does not hold when � = β.

2.4. Wavepacket interaction system with a universal nonlinearity. We will prove in
the following sections that the dynamics of a multi-wavepacket with a universally reso-
nance invariant nk-spectrum for a general system can be approximated with the accuracy
O (�) by substituting the nonlinearity with a properly constructed universal or weakly
universal one. Here we provide an example of a system, called wavepacket interaction
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system, with a universal nonlinearity and show that its dynamics preserves simple wave-
packets as in (12). It is shown later that universal nonlinearities are related to universally
invariant multi-wavepackets in the sense of Definition 18.

Wavepacket interaction system with universal nonlinearity has the form similar to
NLS, namely

∂τu j,ζ = 1

�

[−iζγ 0, j + γ 1, j · ∇ru j,ζ − iζ∇r · γ 2, j∇ru j,ζ
]

+ Fj,ζ (�u), r ∈ R
d ,

(62)

�u = (u1+, u1−, . . . , uN+, uN−), j = 1, . . . , N , ζ = ±, (63)

u j,ζ
∣∣
τ=0 = h j,ζ , h j,ζ (r) = 	 j (βr) eiζk∗ j ·r, (64)

where for every j coefficient γ 0, j ∈ R, γ 1, j ∈ R
d is a vector, γ 2, j is a symmetric d ×d

matrix, γ 1, j · ∇r is a first order scalar differential operator, ∇r · γ 2, j∇r is the second
order scalar differential operator,and the universal polynomial nonlinearities Fj,ζ have
the following form:

Fj,ζ (�u) =
νF∑
ν=1

∑
|�ν|=ν

b�ν, j,ζ

∏N

l=1

(
ul,+ul,−

)νl u j,ζ ,

where �ν = (ν1, . . . , νN ), j = 1, . . . , N , ζ = ±. (65)

Remark 8. Notice that if we set h j,− = h∗
j,+, b�ν, j,+ = b∗

�ν, j,− = b�ν, j and u j,+ = u∗
j,− =

u j then ul,+ul,− = ∣∣ul,+
∣∣2 and Fj,+ (�u) turns into

Fj (u1, . . . , uN ) =
νF∑
ν=1

∑
|�ν|=ν

b�ν, j

∏N

l=1
|ul |2νl u j , (66)

and equations of (62) with ζ = + turn into

∂τu j = 1

�

[−iγ 0, j + γ 1 j · ∇ru j − i∇r · γ 2, j∇ru j
]

+ Fj (u1, . . . , uN ),

u j
∣∣
τ=0 = h j,+, j = 1, . . . , N , ζ = ±. (67)

Obviously, a solution of (67) defines a solution u j,+ = u j , u j,− = u∗
j of the sys-

tem (62). In the simplest case N = 1, d = 1 (67) takes the form of classical NLS:
∂τu = γ 1

�
∂x u − i γ 2

�
∂2

x u + b |u|2 u.

Note that the universal nonlinearity Fj,ζ has a characteristic property

Fj,ζ

(
eiφ1t u1,+, e−iφ1t u1,−, . . . , eiφN t uN ,+, e−iφN t uN ,−

)

= eiζφ j t Fj,ζ (u1+, u1−, . . . , uN+, uN−), (68)

holding for arbitrary set values φi . We also consider more general nonlinearities F for
which (68) holds for a fixed set of frequencies φl = ωnl (k∗l), and call them weakly
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universal. We introduce now the averaging operator AT acting on polynomial functions

F : (C2
)N → (

C
2
)N

by

(AT F) j,ζ =
(

AT,�φF
)

j,ζ
=

1

T

∫ T

0
e−iζφ j t Fj,ζ

(
eiφ1t u1,+, e−iφ1t u1,−, . . . , eiφN t uN ,+, e−iφN t uN ,−

)
dt, (69)

where �φ = (
φ1, . . . , φN

)
. The operator AT,�φ depends on the frequency vector �φ =

(
φ1, . . . , φN

)
. If F is a universal polynomial nonlinearity, then

(
AT,�φF

)
j,ζ

= Fj,ζ for

any choice of frequencies φ1, . . . , φN . Note that averaging

Gav, j,ζ (�u) = lim
T →∞

(
AT,�φG

)
j,ζ
(�u) (70)

is defined for any polynomial nonlinearity G : (C2
)N → (

C
2
)N

. If �φ is generic, then
Gav, j,ζ (�u) is always a universal nonlinearity. In a general case Gav, j,ζ for given fre-
quencies �φ one obtains a weakly universal nonlinearity which might be not universal.

Systems with universal nonlinearities have interesting properties which we describe
in the following proposition and remark.

Proposition 9. Let � = β and γ 2, j = 0. Then evolution governed by the first order
system with a universal nonlinearity (62) preserves simple wavepackets as defined by
(12).

Proof. Let �u (τ ) be a solution of (62) for 0 ≤ τ ≤ τ ∗. Using the property (68) we
change variables

u j,ζ = eiζk∗ j ·re−i
ζγ 0, j
�

τ e−i
γ ′

0 j,ζ
β

τ
v j,ζ , γ ′

0 j,ζ = −ζγ 1 j · k∗ j (71)

and obtain from (62)

∂τ v j,ζ = 1

β
γ 1 j · ∇rv j,ζ + Fj,ζ (�v), v j,ζ

∣∣
τ=0 = 	 j,ζ (βr). (72)

Changing variables

v j,ζ (r, τ ) = w j,ζ (βr, τ ), βr = z, (73)

we obtain from (72) thatw j is a solution of the following system of differential equations:

∂τw j,ζ = γ 1 j · ∇zw j,ζ + Fj,ζ ( �w), w j,ζ
∣∣
τ=0 = 	 j,ζ (z), (74)

which does not depend on β. Then using (73) and (71) we observe that every component
ul of the solution to (62) has the form of a simple wavepacket for every τ ∈ [0, τ ∗], with
an envelope ŵ j (τ ). ��
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Remark 10. Equations (62) with universal nonlinearities allow special solutions in the

form of u j,ζ = eik∗ j ·re−i
γ ′

0 j
β
τ
v j,ζ (τ ), where v j,ζ (τ ) do not depend on r. If the ini-

tial data in (72) are constants, 	 j,ζ (βr) = 	 j,ζ (0), then (72) turns into a system of
ODE. This implies that every linear subspace of pure modal functions with the basis
v j eik∗ j ·r, v j,−e−ik∗ j ·r, j = 1, .., N is invariant with respect to nonlinear equations
(62). Another class of special solutions of (62) are time-harmonic solutions of the form
u j,ζ (r, τ ) = e−iζω j τ v j,ζ (r), where v j,ζ solve a nonlinear eigenvalue problem; for
universal nonlinearitiesω j can be considered as an unknown nonlinear eigenvalue. Exis-
tence of such special solutions is a special property of universal and weakly universal
nonlinearities. It is remarkable that original nonlinear equations might not have time
harmonic solutions whereas equations with universal nonlinearities which approximate
evolution of wavepackets (see Theorem 7) admit such solutions.

2.5. Invariance of excited modes for finite-dimensional ODE’s. Here we discuss the
resonance invariance conditions imposed in Theorem 5 in a simpler case of finite-
dimensional ODE’s. In this case one can also see the rise of universal nonlinearities
in the process of time averaging. As we already discussed in the introduction, a PDE
system (1) when restricted to constant functions turns into the following system of
ODE’s:

∂τU = − i

�
L0U + F (U), U (τ )|τ=0 = h, h ∈ C

2J , U ∈ C
2J, (75)

where F (U) is a polynomial, U = (U1,+,U1,−, . . . ,UJ,+,UJ,−
) ∈ C

2J . We assume that
the eigenvalues ωn,ζ (0) = ω0

n,ζ of the Hermitian matrix L0 = L (k)|k=0 are distinct

ω0
j,+ �= ω0

i,+ for j �= i and the symmetry conditions (7) take the form ω0
n,−ζ = −ω0

n,ζ .

We also assume that the eigenvectors of L0 coincide with the coordinate orts in C
2J .

The following limit case of Theorem 5 with β = 0 shows that solutions to this system
have the property to preserve the set of initially excited modes.

Theorem 11. Let the initial data h = (h1,+, h1,−, . . . , h J,+, h J,−
) ∈ C

2J in (75) have
non-zero components h j,ζ only for a subset B of indices j ∈ {1, . . . , J }, and let B ′ =
{1, . . . , J } \ B be its complementary set. Assume that B is resonance invariant in the
sense that the resonance equation

ω0
n′,ζ −

m∑
j=1

ω0
n j ,ζ

( j) = 0, where n j ∈ B, ζ ( j) ∈ {+,−} (76)

does not have solutions if n′ ∈ B ′(compare with Definition 18 in the special case when
all k∗l = 0). Then under the nonlinear evolution of (75) modes with indices n′ ∈ B ′
remain essentially unexcited in the following sense:

sup
0≤τ≤τ∗

|Un′ (τ )| ≤ C� for all n′ ∈ B ′. (77)

Note that F (U) provides a nonlinear coupling between modes Un j ,ζ
( j) with n j ∈ B

and Un′,ζ with n′ ∈ B ′, but the resulting interaction is not O (1) on a fixed time interval
[0, τ ∗] as one might expect, but rather of order O (v) as (77) shows. One way to prove
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Theorem 11 is to follow the proofs of Theorems 35 and 37 with obvious modifications
and simplifications. In particular, instead of (15) one has to consider the following system
with oscillatory coefficients:

∂τu = e
iτ
�

L0
F
(

e
−iτ
�

L0
u
)
, u (τ )|τ=0 = h. (78)

Alternatively, Theorem 11 can be derived directly from the classical time averaging
principle. Indeed, the time averaging of (78) yields the following averaged system:

∂τv = Fav (v), v (τ )|τ=0 = h,

where Fav is defined as in (69), (70) with the frequencies φ j = ω0
j,+. From the Krylov-

Bogolyubov averaging theorem (see 11,37]) one obtains

|v (τ )− u (τ )| ≤ C�, 0 ≤ τ ≤ τ ∗.

A straightforward examination shows that if B is resonance invariant and j ∈ B ′ then
the polynomial components Fav, j,ζ (v) factorize into Fav, j,ζ (v) = ∑

j ′∈B′,ζ ′ F1
av, j ′,ζ ′

(v) v j ′,ζ ′ , implying (77) since v j,ζ (0) = 0 for j ∈ B ′.
A stronger universal resonance invariance condition in Definition 18 also takes a

simpler form in the ODE case. Indeed, let us collect the terms in (76) at different ω0
j,+

as in (101), namely

ω0
n′,ζ −

m∑
j=1

ω0
n j ,ζ

( j) =
J∑

i=1

δiω
0
i,+, where δi are integers, (79)

Similarly to Definition 18 we call B universally resonance invariant if every solution
to the resonance equation (76) must have n′ ∈ B and every coefficient δi in (79) for
the solution is zero, i.e. δi = 0, i = 1, . . . , J . Obviously, if all ω0

n,+ are rationally
independent then it is universally resonance invariant.

Now let us look at how universal nonlinearities arise under time averaging. Observe
that if the entire set {1, . . . , J } is universally resonance invariant and Fj,ζ (v) are arbitrary
polynomials, then the polynomials Fav, j,ζ (v) are obtained by discarding the “resonant”

terms in e
iτ
�

L0
F
(

e
−iτ
�

L0
u
)

yielding the universal form (65), (66). For example, if F is an

arbitrary cubic nonlinearity in C
2N then the time averaging yields NLS-like nonlinearity

Fav with components

Fav, j,ζ
(
u1,+, u1,−, . . . , uN ,+, uN ,−

) =
N∑

l=1

bl, j,ζ ul,+ul,−u j,ζ .

When B is resonance invariant but not universally resonance invariant the averaging
produces a weakly universal nonlinearity. A nonlinearity which is weakly universal but
not universal may include additional terms, for example the cubic nonlinearity in the
classical four-wave interaction system where it is assumed thatω0

2,−+ω0
3,++ω0

4,+ = ω0
1,+

(see 46] p. 201) in the equation for u1,+ in addition to NLS-like terms involves the product
u2,−u3,+u4,+.
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3. Conditions and Definitions

In this section we formulate and discuss definitions and conditions under which we study
the nonlinear evolutionary system (1) through its modal, Fourier form (3). Most of the
conditions and definitions are naturally formulated for the modal form (3), and this is
one of the reasons we use it as the basic form.

3.1. Linear part. The basic properties of the linear part L (k) of the system (3), which
is a 2J × 2J Hermitian matrix with eigenvalues ωn,ζ (k), has been already discussed
in the Introduction. To account for all needed properties of L (k) we define the singular
set of points k.

Definition 12 (Band-crossing points). We call k0 a band-crossing point for L (k) if
ωn+1,ζ (k0)=ωn,ζ (k0) for some n, ζ or L (k) is not continuous at k0 or ifω1,± (k0) = 0,
we denote the set of such points by σ bc.

In the next condition we collect all constraints imposed on the linear operator L (k).

Condition 13 (Linear part). The linear part L (k) of the system (3) is a 2J ×2J Hermi-
tian matrix with eigenvaluesωn,ζ (k) and corresponding eigenvectors gn,ζ (k) satisfying
for k /∈ σ bc the basic relations (5)–(7). In addition to that we assume:

(i) the set of band-crossing points σ bc is a closed, nowhere dense set in R
d and has

zero Lebesgue measure;
(ii) the entries of the Hermitian matrix L (k) are infinitely differentiable in k for all

k /∈ σ bc that readily implies via the spectral theory, 35], infinite differentiability
of all eigenvalues ωn (k) in k for all k /∈ σ ;

(iii) L (k) satisfies the polynomial bound

‖L (k)‖ ≤ C
(
1 + |k|p), k ∈ R

d , for some C > 0 and p > 0. (80)

Remark 14 (Dispersion relations symmetry). The symmetry condition (7) on the disper-
sion relations naturally arises in many physical problems, for example Maxwell equa-
tions in periodic media, see 1–3,5], or when L (k) originates from a Hamiltonian. We
would like to stress that these symmetry conditions are not imposed to simplify studies
but rather to take into account fundamental symmetries of physical media. In fact, the
opposite case when ((7) is assumed not to hold is much simpler. The symmetry cre-
ates resonant nonlinear interactions, which makes studies more intricate. Interestingly,
many problems without symmetries can be put into the framework with symmetry by
an extension of the relevant system (see Sect. 4).

Remark 15 (Band-crossing points). Band-crossing points are discussed in more detail
in 1, Sect. 5.4], 2, Sects. 4.1, 4.2]. In particular, generically the set σ bc of the band-
crossing point is a manifold of the dimension d −2. Notice that there is an natural ambi-
guity in the definition of the normalized eigenvectors gn,ζ (k) of L (k) which is defined
up to a complex number ξ with |ξ | = 1. This ambiguity may not allow an eigenvector
gn,ζ (k) which can be a locally smooth function in k to be a uniquely defined contin-
uous function in k globally for all k /∈ σ bc because of a possibility of branching. But,
importantly, the orthogonal projector�n,ζ (k) on gn,ζ (k) as defined by (11) is uniquely
defined and, consequently, infinitely differentiable in k via the spectral theory, 35], for
all k /∈ σ bc. Since we consider Û (k) as an element of the space L1 and σ bc is of zero
Lebesgue measure considering k /∈ σ bc is sufficient for us.
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We introduce for vectors û ∈ C
2J their expansion with respect to the orthonormal

basis
{
gn,ζ (k)

}
:

û (k) =
J∑

n=1

∑
ζ=±

ûn,ζ (k) gn,ζ (k) =
J∑

n=1

∑
ζ=±

ûn,ζ (k), ûn,ζ (k) = �n,ζ (k) û (k),

(81)
and we refer to it as the modal decomposition of û (k) and to ûn,ζ (k) as the modal
coefficients of û (k). Evidently

j∑
n=1

∑
ζ=±

�n,ζ (k) = I2J , where I2J is the 2J × 2J identity matrix. (82)

Notice that in view of the polynomial bound 80) we can define the action of the operator
L (−i∇r) on any Schwartz function Y (r) by the formula

̂L (−i∇r)Y (k) = L (k) Ŷ (k), where the order of L does not exceed p. (83)

In a special case when all the entries of L (k) are polynomials (83) turns into the action
of the differential operator with constant coefficients of order not exceeding p.

3.2. Nonlinear part. The nonlinear term F̂ in (3) is assumed to be a general functional
polynomial of the form

F̂
(

Û
)

=
∑

m∈MF

F̂ (m)
(

Ûm
)
, where F̂ (m) is m-homogeneous polylinear operator,

(84)

MF = {m1, . . . ,m p
} ⊂ {2, 3, . . .} is a finite set, and m F = max {m : m ∈ MF } .

(85)

The integer m F in (85) is called the degree of the functional polynomial F̂ . For instance,
if MF = {2} or MF = {3} the polynomial F̂ is respectively homogeneous quadratic or
cubic. Every m-linear operator F̂ (m) in (84) is assumed to be of the form of a convolution

F̂ (m)
(

Û1, . . . , Ûm

)
(k, τ ) =

∫

Dm

χ(m)
(

k, �k
)

Û1
(
k′) . . . Ûm

(
k(m)

(
k, �k
))

d̃(m−1)d �k,
(86)

where Dm = R
(m−1)d , d̃(m−1)d �k = dk′ . . . dk(m−1)

(2π)(m−1)d
,

k(m)
(

k, �k
)

= k − k′ − . . .− k(m−1), �k =
(

k′, . . . ,k(m)
)
, (87)

indicating that the nonlinear operator F (m) (U1, . . . ,Um) is translation invariant (it may
be local or non-local). The quantities χ(m) in (86) are called susceptibilities. For numer-
ous examples of nonlinearities of the form similar to (84), (86) see 1–7] and references
therein. In what follows the nonlinear term F̂ in (3) will satisfy the following conditions.
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Condition 16 (Nonlinearity). The nonlinearity F̂
(

Û
)

is assumed to be of the form

(84)–(86). The susceptibility χ(m)
(
k,k′, . . . ,k(m)

)
is infinitely differentiable for all k

and k( j) which are not band-crossing points, and is bounded, namely
∥∥∥χ(m)

∥∥∥ = (2π)−(m−1)d sup
k,k′,...,k(m)∈Rd\σ bc

∣∣∣χ(m)
(

k,k′, . . . ,k(m)
)∣∣∣ ≤ Cχ , m ∈ MF ,

(88)

where the norm
∣∣∣χ(m)

(
k, �k
)∣∣∣ of the m-linear tensor χ(m) : (C2J

)m → (
C

2J
)m

for fixed

k, �k is defined by
∣∣∣χ(m)

(
k, �k
)∣∣∣ = sup

|x j |≤1

∣∣∣χ(m)
(

k, �k
)
(x1, . . . , xm)

∣∣∣ , where |x| is the Euclidean norm.

(89)

When χ(m)
(

k, �k
)

depend on small � or, more generally, on �q , q > 0, we simi-

larly have χ(m)
(

k, �k, �q
)

. Many results of this paper extend to this case, in particular

if
∥∥∥χ(m)

(
k, �k, �q

)
− χ(m)

(
k, �k, 0

)∥∥∥ ≤ C ′
χ�

q for � ≤ 1 then conditions of Corollary

38 are fulfilled.
Note that since the tensorsχ(m)

(
k, �k
)

are bounded, the dependence on
(

k, �k
)

cannot

be polynomial, therefore the original equation (1) does not include spatial derivatives
but rather includes bounded “pseudodifferential” operators. Note that this type of sus-
ceptibilities with spatial dispersion is common in nonlinear optics, see 15,41,55].

3.3. Resonance invariant nk-spectrum. In this section, relying on given dispersion rela-
tions ωn (k) ≥ 0, n ∈ {1, . . . , J }, we consider resonance properties of nk-spectra S and
the corresponding k-spectra KS as defined in Definition 2, i.e.

S = {(nl ,k∗l), l = 1, . . . , N } ⊂ � = {1, . . . , J }×R
d , KS =

{
k∗li

, i =1, . . . , |KS|
}
.

(90)
We precede the formal description of the resonance invariance (see Definition 18) with
the following guiding physical picture. Initially at τ = 0 the wave is a multi-wavepacket
composed of modes from a small vicinity of the nk-spectrum S. As the wave evolves
according to (3) the polynomial nonlinearity inevitably involves a larger set of modes
[S]out ⊇ S, but not all modes in [S]out are “equal” in developing significant amplitudes.
The qualitative picture is that whenever a certain interaction phase function (see (134)
below) is not zero, the fast time oscillations weaken effective nonlinear mode interac-
tion and the energy transfer from the original modes in S to relevant modes from [S]out,
keeping their magnitudes vanishingly small as β, � → 0. There is a smaller set of modes
[S]res

out which can interact with modes from S rather effectively and develop significant
amplitudes. Now,

if [S]res
out ⊆ S then S is called resonance invariant. (91)

In simpler situations the resonance invariance conditions turn into the well-known in
nonlinear optics phase and frequency matching conditions. For instance, if S contains(
n0,k∗l0

)
and the dispersion relations allow for the second harmonic generation in
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another band n1 so that 2ωn0

(
k∗l0

) = ωn1

(
2k∗l0

)
, then for S to be resonance invariant

it must contain
(
n1, 2k∗l0

)
too.

Let us turn now to the rigorous constructions. First we introduce necessary nota-
tions. Let m ≥ 2 be an integer, �l = (l1, .., lm), l j ∈ {1, . . . , N } be an integer vector
from {1, . . . , N }m and �ζ = (

ζ (1), , .., ζ (m)
)
, ζ ( j) ∈ {+1,−1} be a binary vector from

{+1,−1}m . Note that a pair
(�ζ , �l

)
naturally labels a sample string of the length m

composed of elements
(
ζ ( j), nl j ,k∗l j

)
from the set {+1,−1} × S. Let us introduce the

sets

� = {(ζ , l) : l ∈ {1, . . . , N } , ζ ∈ {+1,−1}},
�m =

{�λ = (λ1, . . . , λm), λ j ∈ �, j = 1, . . . ,m
}
. (92)

There is a natural one-to-one correspondence between�m and {−1, 1}m ×{1, . . . , N }m

and we will write, exploiting this correspondence

�λ =
((
ζ ′, l1

)
, . . . ,

(
ζ (m), lm

))
=
(�ζ , �l

)
, �ϑ ∈ {−1, 1}m, �l ∈{1, . . . , N }m for �λ∈�m .

(93)
Let us introduce the following linear combination:

κm

(�λ
)

= κm

(�ζ , �l
)

=
m∑

j=1

ζ ( j)k∗l j with ζ ( j) ∈ {+1,−1}, (94)

and let [S]K ,out be the set of all its values as k∗l j ∈ KS , �λ ∈ �m , namely

[S]K ,out =
⋃

m∈MF

⋃
�λ∈�m

{
κm

(�λ
)}
. (95)

We call [S]K ,out the output k-spectrum of KS . Everywhere in this paper we consider
nk-spectra S which satisfy the following condition:

[S]K ,out

⋂
σ bc = ∅. (96)

We also define the output nk-spectrum of S by

[S]out =
{
(n,k) ∈ {1, . . . , J } × R

d : n ∈ {1, . . . , J } , k ∈ [S]K ,out

}
. (97)

We introduce the following functions:

�1,m

(�λ
) (�k∗

)
=∑m

j=1 ζ
( j)ωl j

(
k∗l j

)
, �k∗ = (k∗1, . . . ,k∗|KS |

)
, where k∗l j ∈ KS,

(98)

�
(
ζ , n, �λ

) (
k∗∗, �k∗

)
= −ζωn (k∗∗) +�1,m

(�λ
) (�k∗

)
, (99)

where ζ = ±1, m ∈ MF as in (84). We introduce these functions to apply later to phase
functions (134).

Now we introduce the resonance equation

�
(
ζ , n, �λ

) (
ζκm

(�λ
)
, �k∗
)

= 0, �l ∈ {1, . . . , N }m, �ζ ∈ {−1, 1}m, (100)
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denoting by P (S) the set of its solutions
(

m, ζ , n, �λ
)

. Such a solution is called S-internal

if (
n, ζκm

(�λ
))

∈ S, that is n = nl0 , ζκm

(�λ
)

= k∗l0 , l0 ∈ {1, . . . , N },

and we denote the corresponding l0 = I
(�λ
)

. We also denote by Pint (S) ⊂ P (S) the

set of all S-internal solutions to (100).
Now we consider the simplest solutions to (100) which play an important role.

Keeping in mind that the string �l can contain several copies of a single value l, we
can recast the sum in (98) as follows:

�1,m

(�λ
)

= �1,m

(�ζ , �l
)

=
N∑

l=1

δlωl (k∗l), where δl

=
{∑

j∈�l−1(l) ζ
( j) if �l−1 (l) �= ∅

0 if �l−1 (l) = ∅
,

�l−1 (l) = { j : l j = l, 1 ≤ j ≤ m
}
, �l = (l1, . . . , lm), 1 ≤ l ≤ N . (101)

Let us call a solution
(

m, ζ , n, �λ
)

∈ P(S) of (100) universal if it has the following

properties: (i) only a single coefficient out of all δl in (101) is nonzero, namely for some
I0 we have δ I0 = ±1 and δl = 0 for l �= I0; (ii) n = nI0 and ζ = δ I0 . A justification for
calling such a solution universal comes from the fact that if it is a solution for one �k∗
it is a solution for any other �k∗ ∈ R

d . We denote the set of universal solutions to (100)

by Puniv (S), and note that a universal solution is a S -internal solution with I
(�λ
)

= I0

implying
Puniv (S) ⊆ Pint (S). (102)

Indeed, observe that for δl as in (101),

κm

(�λ
)

= κm

(�ζ , �l
)

=
m∑

j=1

ζ ( j)k∗l j =
N∑

l=1

δlk∗l , (103)

implying κm

(�λ
)

= δ I0 k∗I0 and ζκm

(�λ
)

= δ2
I0

k∗I0 = k∗I0 . Then Eq. (100) is

obviously satisfied and
(

n, ζκm

(�λ
))

= (nI0 ,k∗I0

) ∈ S.

Example 17 (Universal solutions). Suppose there is just a single band, i.e. J = 1, a sym-
metric dispersion relation ω1 (−k) = ω1 (k), a cubic nonlinearity F with MF = {3}.
First let us take the simplest nk -spectrum S1 = {(1,k∗)}, that is N = 1. Then

�1,3

(�λ
) (�k∗

)
= δ1ω1 (k∗) and κm

(�λ
)

= δ1k∗ where we use notation (101). The

universal solution set has the form Puniv (S1) =
{(

3, ζ , 1, �λ
)

: �λ ∈ �ζ , ζ = ±
}

, where

�+ consists of vectors (λ1, λ2, λ3) of the form ((−, 1), (+, 1), (+, 1)), ((+, 1), (−, 1),
(+, 1)) and ((+, 1), (+, 1), (−, 1)). Obviously, Puniv (S1) = Pint (S1). In the next
example we take the nk-spectrum S = {(1,k∗), (1,−k∗)}, that is N = 2 and k∗1 =
k∗,k∗2 = −k∗. This example is typical for two counterpropagating waves. Then

�1,3

(�λ
) (�k∗

)
= ∑3

j=1 ζ
( j)ωl j

(
k∗l j

) = (δ1 + δ2) ω1 (k∗) and κm

(�λ
)

= ∑m
j=1 ζ

( j)
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k∗l j = δ1k∗1 + δ2k∗2 = (δ1 − δ2)k∗ where we use notation (101). The universal

solution set has the form Puniv (S) =
{(

3, ζ , 1, �λ
)

: �λ ∈ �ζ , ζ = ±
}

, where �+ con-

sists of vectors (λ1, λ2, λ3) of the form ((+, 1), (−, 1), (+, 1)), ((+, 1), (−, 1), (+, 2)),
((+, 2), (−, 2),
(+, 1)), ((+, 2), (−, 2), (+, 2)), and vectors obtained from the listed ones by permuta-
tions of coordinates λ1, λ2, λ3. The solutions from Pint (S) have to satisfy |δ1 − δ2| = 1
and |δ1 + δ2| = 1 which is possible only if δ1δ2 = 0. Since ζ = δ1 + δ2 we have

ζκm

(�λ
)

= (
δ2

1 − δ2
2

)
k∗ and ζκm

(�λ
)

= k∗1 if |δ1| = 1 or ζκm

(�λ
)

= k∗2 if

|δ2| = 1. Hence Pint (S) = Puniv (S) in this case. Note that if we set S2 = {(1,−k∗)}
then S = S1 ∪ S2 but Pint (S) is larger than Pint (S1) ∪ Pint (S2). This can be inter-
preted as follows. When only modes from S1 are excited, the modes from S2 remain
non-excited. But when both S1 and S2 are excited, there is a resonance effect of S1 onto
S2, represented, for example, by �λ = ((+, 1), (−, 1), (+, 2)), which involves the mode

ζκm

(�λ
)

= k∗2.

Now we are ready to define resonance invariant spectra. First, we introduce a subset
[S]res

out of [S]out by the formula

[S]res
out =

{
(n,k∗∗) ∈ [S]out : k∗∗ = ζκm

(�λ
)
, m ∈ MF , where (104)

(
m, ζ , n, �λ

)
is a solution of (100)

}
,

calling it resonant output spectrum of S, and then we define

resonance selection operation R (S) = S ∪ [S]res
out . (105)

Definition 18 (Resonance invariant nk-spectrum). The nk-spectrum S is called reso-
nance invariant if R (S) = S or, equivalently, [S]res

out ⊆ S. The nk-spectrum S is called
universally resonance invariant if R (S) = S and Puniv (S) = Pint (S).

It is worth noticing that even when a nk-spectrum is not resonance invariant often it
can be easily extended to a resonance invariant one. Namely, if R j (S) ∩ σ bc = ∅ for
all j then the set

R∞ (S) =
∞⋃
j=1

R j (S) ⊂ � = {1, . . . , J } × R
d

is resonance invariant. In addition to that, R∞ (S) is always at most countable. Usually
it is finite, i.e. R∞ (S) = Rp (S) for a finite p , see examples below and we also show
below that R∞ (S) = S for generic KS .

Example 19 (Resonance invariant nk-spectra for quadratic nonlinearity). Suppose there
is a single band, i.e. J = 1,with a symmetric dispersion relation, and a quadratic non-
linearity F , that is MF = {2}. Let us assume that k∗ �= 0, k∗, 2k∗, 0 are not band-
crossing points and look at two examples. First, suppose that 2ω1 (k∗) �= ω1 (2k∗) (no
second harmonic generation) and ω1 (0) �= 0. Let us set the nk-spectrum to be the
set S1 = {(1,k∗)}, then S1 is resonance invariant. Indeed, KS1 = {k∗} , [S1]K ,out =
{0, 2k∗,−2k∗}, [S1]out = {(1, 0), (1, 2k∗), (1,−2k∗)} and an elementary examination
shows that [S1]res

out = ∅ ⊂ S1 implying R (S1) = S1. For the second example let us
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assume ω1 (0) �= 0 and 2ω1 (k∗) = ω1 (2k∗), that is the second harmonic genera-
tion is allowed. Here [S1]res

out = {(1, 2k∗)} and R (S1) = {(1,k∗), (1, 2k∗)} implying
R (S1) �= S1 and, hence, S1 is not resonance invariant. Suppose now that 4k∗, 3k∗ /∈ σ bc
and ω1 (0) �= 0, ω1 (4k∗) �= 2ω1 (2k∗), ω1 (3k∗) �= ω1 (k∗) + ω1 (2k∗) and let us set
S2 = {(1,k∗), (1, 2k∗)}. An elementary examination shows that S2 is resonance invari-
ant. Note that S2 can be obtained by iterating the resonance selection operator, namely
S2 = R (R (S1)). Note also that Puniv (S2) �= Pint (S2). Notice that ω1 (0) = 0 is a
special case since k = 0 is a band-crossing point, and it requires a special treatment.

Example 20 (Resonance invariant nk-spectra for cubic nonlinearity). Let us consider
the one-band case with a symmetric dispersion relation and a cubic nonlinearity that is
MF = {3}. First we take S1 = {(1,k∗)}, we assume that k∗, 3k∗ are not band-cross-

ing points, implying [S1]K ,out = {k∗,−k∗, 3k∗,−3k∗}. We have �1,3

(�λ
) (�k∗

)
=

∑3
j=1 ζ

( j)ω1 (k∗) = δ1ω1 (k∗) and κm

(�λ
)

= δ1k∗, where we use notation (101),

δ1 takes values 1,−1, 3,−3. If 3ω1 (k∗) �= ω1 (3k∗), then (100) has a solution only

if |δ1| = 1 and δ1 = ζ , hence ζκm

(�λ
)

= k∗ and every solution is internal. There-

fore, [S1]res
out = ∅ and R (S1) = S1. Now consider the case associated with the third

harmonic generation, namely 3ω1 (k∗) = ω1 (3k∗) and assume that ω1 (3k∗) + 2ω1
(k∗) �= ω1 (5k∗), 3ω1 (3k∗) �= ω1 (9k∗), 2ω1 (3k∗) + ω1 (k∗) �=ω1 (7k∗), 2ω1 (3k∗)−
ω1 (k∗) �=ω1 (5k∗). An elementary examination shows that the set S4 = {(1, 3k∗), (1,k∗),
(1,−k∗) (1,−3k∗)} satisfies R (S4) = S4. Consequently, a multiwavepacket having
S4 as its resonance invariant nk-spectrum involves the third harmonic generation and,
according to Theorem 3, it is preserved under nonlinear evolution.

The above examples indicate that in simple cases the conditions on k∗ which can
make S non-invariant with respect to R have a form of several algebraic equations, there-
fore, for almost all k∗ such spectra S are resonance invariant. The examples also show
that if we fix S and dispersion relations then we can include S in the larger spectrum
S′ = Rp (S) using repeated application of the operation R to S , and often the resulting
extended nk-spectrum S′ is resonance invariant. We show in the following section that
nk-spectrum S with generic KS is universally resonance invariant.

Note that the concept of resonance invariant nk-spectrum gives a mathematical
description of such fundamental concepts of nonlinear optics as phase matching, fre-
quency matching, four wave interaction in cubic media and three wave interaction in
quadratic media. If a multi-wavepacket has a resonance invariant spectrum, all these
phenomena may take place in the internal dynamics of the multi-wavepacket, but do
not lead to resonant interactions with continuum of all remaining modes.

3.4. Genericity of the nk-spectrum invariance condition. In simpler situations, when
the number of bands J and wavepackets N are not too large, the resonance invariance
of nk- spectrum can be easily verified as above in Examples 19, 20, but what one can
say if J or N are large, or if the dispersion relations are not explicitly given? We show
below that in properly defined non-degenerate cases a small variation of KS makes S
universally resonance invariant, i.e. the resonance invariance is a generic phenomenon.

Assume that the dispersion relations ωn (k) ≥ 0, n ∈ {1, . . . , J } are given. Observe

then that�m

(
ζ , n, �λ

)
= �m

(
ζ , n, �λ

) (
k∗1, . . . ,k∗|KS |

)
defined by (99) is a continuous

function of k∗l /∈ σ bc for every m, ζ , n, �λ.
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Definition 21 (ω-degenerate dispersion relations). We call dispersion relationsωn (k),
n = 1, . . . , J , ω-degenerate if there exists such a point k∗ ∈ R

d \σ bc that for all k in a
neighborhood of k∗ at least one of the following four conditions holds: (i) the relations
are linearly dependent, namely

∑J
n=0 Cnωn (k) = c0, where all Cn are integers, one of

which is nonzero, and the c0 is a constant; (ii) at least one of ωn (k) is a linear function;
(iii) at least one ofωn (k) satisfies equation Cωn (k) = ωn (Ck)with some n and integer
C �= ±1; (iv) at least one of ωn (k) satisfies equation ωn (k) = ωn′ (−k), where n′ �= n.

Note that fulfillment of any of the four conditions in Definition 21 makes it impossible
to turn some non-resonance invariant sets into resonance invariant ones by a variation of
k∗l . For instance, if MF = {2} as in Example 19 and 2ω1 (k) = ω1 (2k) for all k in an
open set G then the set {(1,k∗)} with k∗ ∈ G cannot be made resonance invariant by a
small variation of k∗. Below we show that if dispersion relations are not ω -degenerate,
then a small variation of k∗l turns non-resonance invariant sets into resonance invariant.

Theorem 22. If�m

(
ζ , n0, �λ

) (
k′∗1, . . . ,k′∗|KS |

)
= 0 on a cylinder G in

(
R

d \ σ bc
)|KS |

which is a product of small balls Gi ⊂ (Rd \ σ bc
)
, then either

(
m, ζ , n0, �λ

)
∈ Puniv (S)

or dispersive relations ωn (k) are ω-degenerate as in Definition 21.

Proof. Collecting similar terms in (100) we obtain the following equation for ki from
Gi :

J∑
n=1

|KS |∑
i=1

δ′inωn (ki ) = ζωn0

⎛
⎝

|KS |∑
i=1

δ′i ki

⎞
⎠ where δ′in, δ′i are integers. (106)

Comparing (106) with (101) we see that δ′in may be non-zero only if (n,ki ) ∈ S, that
is (n,ki ) = (nl ,kl) with l ∈ {1, . . . , N }, where l = l (i, n) is uniquely determined and
δ′in = δl with δl as in (101). If there are two nonzero coefficients δi in (106) we use an
elementary Proposition 24 below, noticing that we are in case (ii) of Definition 21. If we
do not have two nonzero δ′i then either all δ′i = 0 or only one δ′i = δ′i0

�= 0. If all δ′i = 0

then the right-hand side of (106) turns into ωn0 (0) and, Gi ⊂ (Rd \ σ bc
)
, ωn0 (0) �= 0.

Hence, for every i the sum
∑J

n=1 δ
′
inωn (ki ) is constant, one of δ′in is non-zero and we

are in case (i) of Definition 21. If only one δ′i �= 0 with i = i0 we have

J∑
n=1

|KS |∑
i=1

δ′inωn (ki ) = ζωn0

(
δ′i0

ki0

)
for all ki ∈ Gi , ki0 ∈ Gi0 , (107)

implying linear dependence of the dispersion relations, namely

J∑
n=1

δ′inωn (ki ) = Ci , i �= i0, where Ci are constant.

The above equations would not imply linear dependence as in case (i) of Definition 21
only if

δ′in = 0, i �= i0, n = 1, . . . , J, (108)
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and in this case the equality (107) takes the form

J∑
n=1

δ′i0nωn
(
ki0

) = ζωn0

(
δ′i0

ki0

)
for all ki0 ∈ Gi0 . (109)

Note that in this case we deduce from (94) and (98) that
∑J

n=1 δ
′
i0n = δ′i0

. If
∣∣∣δ′i0

∣∣∣ �= 1

we are in case (iii) of Definition 21, whereas if
∣∣∣δ′i0

∣∣∣ = 1 and n �= n0 we are in case (iv)

of Definition 21. If
∣∣∣δ′i0

∣∣∣ = 1 and n = n0 (109) turns into δ′i0
ωn0

(
ki0

) = ζωn0

(
δ′i0

ki0

)
.

Since ωn0 > 0 it implies δ′i0
= ζ and ωn0

(
ki0

) = ωn0

(
ζ δ′i0

ki0

)
. Hence, in this case(

m, ζ , n0, �λ
)

∈ Puniv (S), and since all possibilities are exhausted the proof is complete.
��
Theorem 23 (Genericity of resonance invariance). Assume that dispersive relations
ωn (k) are continuous and not ω-degenerate as in Definition 21. Let Krinv be a set of
points

(
k∗1, . . . ,k∗|KS |

)
such that there exists a universally resonance invariant

nk-spectrum S for which its k-spectrum KS = {
k∗1, . . . ,k∗|KS |

}
. Then Krinv is open

and everywhere dense set in
(
R

d \ σ bc
)|KS |

.

Proof. The fact that Krinv is open follows from Definition 18 and the continuity in
k of the dispersion relations ωn (k). Let G be a small open ball such that its clo-

sure Ḡ ⊂ (
R

d \ σ bc
)|KS |

. It suffices to prove that Ḡ ∩ Krinv contains at least one point(
k∗1, . . . ,k∗|KS |

)
. For a given finite set MF let us consider all possible

(
m, ζ , n0, �λ

)
∈
⋃

m∈MF
×{−1, 1} × {1, . . . , J } ×�m

which are not universal solutions to (100), and for a given
(

m, ζ , n0, �λ
)

let G0(m, ζ , n0,

�λ) be a set of solutions
(
k1, . . . ,k|KS |

)
to (100) in Ḡ, and notice that it is a closed set.

Let now G0 (S) ⊂ Ḡ be the union of the sets G0

(
m, ζ , n0, �λ

)
over all

(
m, ζ , n0, �λ

)
∈

P (S) \ Puniv (S) and let us show that G0 (S) �= G. Indeed, suppose that G0 (S) = G
and hence G is a finite union of closed sets. According to Baire’s theorem one of the sets

G0

(
m, ζ , n0, �λ

)
with

(
m, ζ , n0, �λ

)
∈ P (S)\ P univ (S)must have a nonempty interior.

Then, according to Theorem 22, the dispersion relations ωn (k) are ω-degenerate as in
Definition 21 contradicting the conditions of the theorem. Hence, there is always a point(
k∗1, . . . ,k∗|KS |

) ∈ P (S) \ P univ (S) that completes the proof. ��
The proof of the next statement is elementary and we skip it.

Proposition 24. Let f1 (k), f2 (k), f3 (k)be real-valued and continuous functions respec-
tively in neighborhoods of k∗1 , k∗2, k∗1+k∗2 in R

d . Assume that the following equation:

f1 (k1) + f2 (k2) = f3 (δ1k1 + δ2k2) + C0,

holds in these neighborhoods where C0, δ1, δ2 are constants and δ1δ2 �= 0. Then all
three functions f1 (k), f2 (k), f3 (k) are linear in neighborhoods of k∗1, k∗2, k∗1 + k∗2
respectively.
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4. Reduction to a Standard Framework

Many well known nonlinear evolutionary equations and systems can be easily reduced
to the framework of (1), (3) involving two small parameters � and β and characterized
by the following properties: (i) the linear part L has a large factor 1

�
before it; (ii) the

nonlinearity F (U) is independent of �, β or depends on � regularly; (iii) the initial data
depend on β so that they do not vanish as β → 0; (iv) the solutions are considered on the
time interval 0 ≤ τ ≤ τ ∗, where τ ∗ > 0 does not depend on �, β. Notice that solutions
to (1), (3) under the above conditions exhibit nonlinear effects uniformly with respect
to small �, β on the time interval 0 ≤ τ ≤ τ ∗.

There are important classes of problems which can be readily reduced to the framework
of (1), (3) by a simple rescaling.

Systems with a small factor before the nonlinearity. Consider a problem of the form

∂t v = −iLv + αf (v), v|t=0 = h, 0 < α � 1, (110)

where initial data are bounded uniformly in α. Such problems are reduced to (1) by the
time rescaling τ = tα. Note that now � = α and the finite time interval 0 ≤ τ ≤ τ ∗
corresponds to the long time interval 0 ≤ t ≤ τ ∗/α.

Systems with small initial data on long time intervals. The equation here is

∂t v = −iLv + f0 (v), v|t=0 = α0h, 0 < α0 � 1, where

f0 (v) = f (m)0 (v) + f (m+1)
0 (v) + . . . , (111)

and f (m) (v) is a homogeneous polynomial of degree m ≥ 2. After the rescaling
v = α0V, we obtain the following equation with a small nonlinearity:

∂t V = −iLV + αm−1
0

[
f (m)0 (V) + α0f0(m+1) (V) + . . .

]
, V|t=0 = h, (112)

which is of the form of (110) with α = αm−1
0 . Note that nonlinearities f in (110) which

are obtained from problems with small initial data and regular nonlinearities f0 (v) have
a special form. Namely, they are almost homogeneous, f (V) = f (m)0 (V) + α [. . .] with

leading term f (m)0 (V). Introducing the slow time variable τ = tαm−1
0 we get from the

above an equation of the form (1), namely

∂τV = − i

αm−1
0

LV +
[
f (m) (V) + α0f (m+1) (V) + . . .

]
, V|τ=0 = h, (113)

where the nonlinearity does not vanish as α0 → 0. In this case � = αm−1
0 and the finite

time interval 0 ≤ τ ≤ τ ∗ corresponds to the long time interval 0 ≤ t ≤ τ∗
αm−1

0
with

small α0 � 1. Note that Corollary 38 for �-dependent nonlinearities can be applied to
this case. This allows, in particular, to apply results of this paper to the Sine-Gordon
equation where f0 (v) = sin v. Note that a different rescaling τ = tαm

0 with � = αm
0

would produce a large term �−1/mf (m) (V). If the term f (m) (V) is non-resonant for the
initial data h such a term still produces a small contribution to the solution on interval
t ≤ τ ∗/αm

0 with small τ ∗. The approach of this paper can be applied to this moderately
singular case as well, but it would require more technical efforts and for the sake of
simplicity we restrict ourselves to the regular case. The interaction of quadratic (m = 2)
nonlinearity with the cubic term of the 1D model equation of form (111) was studied by
Schneider 51].



Wavepacket Preservation Under Nonlinear Evolution 359

High-frequency carrier waves. Sometimes high spatial frequency of carrier waves in
the initial wavepackets after a rescaling creates a large parameter 1

�
at the linear part.

For example, Nonlinear Schrodinger equation

∂τU = −i∂2
x U + iα |U |2 U, U |τ=0 = h1 (βx) eiMk∗1x + h2 (βx) eiMk∗2x + c.c.,

(114)
where c.c. stands for complex conjugate of the prior term, and M � 1 is a large param-
eter, can be recast in the form (1). Indeed, changing variables y = Mx in the above
equation we obtain

∂τU = −i
1

�
∂2

y U + iα |U |2 U, U |τ=0 = h1
(
β1 y

)
eik∗1 y + h2

(
β1 y

)
eik∗2 y + c.c.,

where β1 = β
M � 1, � = 1

M2 � 1. Note that though the nonlinearity|U |2 U in (114)
is not complex homogeneous, it can be considered as a restriction of a system with a
complex homogeneous nonlinearity as (67) is a restriction of (62).

First order hyperbolic equations and systems. Consider now the system (45), (46) for
which the symmetry (7) does not hold. The system can be put into the standard frame-
work by formally adding two more equations

∂τw1 = c1

�
∂xw1 + F1 (w1, w2), ∂τw2 = c2

�
∂xw2 + F2 (w1, w2), (115)

w1|τ=0 = 0, w2|τ=0 = 0,

which have only trivial solution w1 = w2 = 0 not affecting the solutions to the original
system (45), (46). The extended system has the linear part with two-band dispersion
relations ω1,ζ (k) = c1ζ |k|, ω2,ζ (k) = c2ζ |k| , ζ = ±, satisfying evidently (7).

5. Integrated Evolution Equation

Using the variation of constants formula we recast the modal evolution equation (3) into
the following equivalent integral form:

Û (k, τ ) =
∫ τ

0
e

−i(τ−τ ′)
�

L(k) F̂
(

Û
)
(k, τ ) dτ ′ + e

−iζ τ
�

L(k)ĥ (k), τ ≥ 0. (116)

Then we factor Û (k, τ ) into the slow variable û (k, τ ) and the fast oscillatory term as
in (14), namely

Û (k, τ ) = e− iτ
�

L(k)û (k, τ ), Ûn,ζ (k, τ ) = ûn,ζ (k, τ ) e− iτ
�
ζωn(k), (117)

where ûn,ζ (k, τ ) are the modal coefficients of û (k, τ ) as in (81). Notice that ûn,ζ (k, τ )
in (117) may depend on � and (117) is just a change of variables and not an assumption.
Consequently we obtain the following integrated evolution equation for û = û (k, τ ),
τ ≥ 0,

û (k, τ ) = F (û) (k, τ ) + ĥ (k), F (û) =
∑

m∈MF

F (m) (ûm (k, τ )
)
, (118)

F (m) (ûm) (k, τ ) =
∫ τ

0
e

iτ ′
�

L(k) F̂m

((
e

−iτ ′
�

L(·)û
)m) (

k, τ ′) dτ ′, (119)



360 A. Babin, A. Figotin

where F̂m are defined by (84) and (86) in terms of the susceptibilities χ(m), and F (m)

are bounded as in the following lemma.

Lemma 25 (Boundness of multilinear operators). F (m) defined by (86), (119) is a
bounded operator from E = C

(
[0, τ ∗] , L1

)
into C1

(
[0, τ ∗] , L1

)
satisfying

∥∥∥F (m) (û1 . . . ûm
)∥∥∥

E
≤ τ ∗

∥∥∥χ(m)
∥∥∥
∏m

j=1

∥∥û j
∥∥

E , (120)
∥∥∥∂τF (m) (û1 . . . ûm

)∥∥∥
E

≤
∥∥∥χ(m)

∥∥∥
∏

j

∥∥û j
∥∥

E . (121)

Proof. Notice that since L (k) is Hermitian,
∥∥∥exp

{
−iL (k) τ 1

�

}∥∥∥ = 1. Using the Young

inequality, ∥∥û ∗ v̂
∥∥

L1 ≤ ∥∥û
∥∥

L1

∥∥v̂
∥∥

L1 , (122)

together with (86), (119) we obtain

∥∥∥F (m) (û1 . . . ûm
)
(·, τ )

∥∥∥
L1

≤ sup
k,�k

∣∣∣χ(m)
(

k, �k
)∣∣∣

∫

Rd

∫ τ

0

∫

Dm

∣∣û1
(
k′)∣∣ . . .

∣∣∣ûm

(
k(m)

(
k, �k
))∣∣∣ dk′ . . . dk(m−1)dτ 1dk ≤

∥∥∥χ(m)
∥∥∥
∫ τ

0

∥∥û1 (τ 1)
∥∥

L1 . . .
∥∥ûm (τ 1)

∥∥
L1 dτ 1 ≤ τ ∗

∥∥∥χ(m)
∥∥∥
∥∥û1
∥∥

E . . .
∥∥ûm

∥∥
E ,

proving (120). Similarly we prove (121) by

∥∥∥∂τF (m) (û1 . . . ûm
)
(·, τ )

∥∥∥
L1

≤
∥∥∥χ(m)

∥∥∥
∫

Rd

∫

Dm

∣∣û1
(
k′)∣∣ . . .

∣∣∣ûm

(
k(m)

(
k, �k
))∣∣∣ dk′ . . . dk(m−1)dk≤

∥∥∥χ(m)
∥∥∥ ∥∥û1

∥∥
E . . .

∥∥ûm
∥∥

E .

��
Equation (118) can be recast as the following abstract equation in a Banach space:

û = F (û) + ĥ, û, ĥ ∈ E, (123)

and it readily follows from Lemma 25 that F (û) has the following properties.

Lemma 26. The operator F (û) defined by (118)–(119) satisfies the Lipschitz condition

∥∥F (û1
)− F (û2

)∥∥
E ≤ τ ∗CF

∥∥û1 − û2
∥∥

E , (124)

where CF ≤ Cχm2
F (4R)m F −1 if

∥∥û1
∥∥

E ,
∥∥û2
∥∥

E ≤ 2R, with Cχ as in (88).

We also will use the following form of the contraction principle.
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Lemma 27 (Contraction principle). Consider equation

x = F (x) + h, x,h ∈ B, (125)

where B is a Banach space, F is an operator in B. Suppose that for some constants
R0 > 0 and 0 < q < 1 we have

‖h‖ ≤ R0, ‖F (x)‖ ≤ R0 if ‖x‖ ≤ 2R0, (126)

‖F (x1)− F (x2)‖ ≤ q ‖x1 − x2‖ if ‖x1‖ , ‖x2‖ ≤ 2R0. (127)

Then there exists a unique solution x to Eq. (125) such that ‖x‖ ≤ 2R0. Let ‖h1‖, ‖h2‖ ≤
R0, then the two corresponding solutions x1, x2 satisfy

‖x1‖ , ‖x2‖ ≤ 2R0, ‖x1 − x2‖ ≤ (1 − q)−1 ‖h1 − h2‖. (128)

Let x1, x2 be the two solutions of correspondingly two equations of the form (125) with
F1, h1 and F2, h2. Assume that that F1 (u) satisfies (126), (127) with a Lipschitz constant
q < 1 and that ‖F1 (x)− F2 (x)‖ ≤ δ for ‖x‖ ≤ 2R0. Then

‖x1 − x2‖ ≤ (1 − q)−1 (δ + ‖h1 − h2‖). (129)

Lemma 26 and the contraction principle as in Lemma 27 imply the following exis-
tence and uniqueness theorem.

Theorem 28. Let ‖h‖E ≤ R, and let τ ∗ < 1/CF where CF , is a constant from Lemma
26. Then Eq. (118) has a solution û ∈ E = C

(
[0, τ ∗] , L1

)
which satisfies

∥∥û
∥∥

E ≤ 2R,
and such a solution is unique.

The following existence and uniqueness theorem follows from Theorem 28.

Theorem 29. Let (3) satisfy (88) and ĥ ∈ L1
(
R

d
)
,
∥∥∥ĥ
∥∥∥

L1
≤ R. Then there exists a

unique solution to the modal evolution equation (3) in the functional space C1([0, τ ∗] ,
L1). The number τ ∗ depends on R and Cχ .

Using the inequality (21) and applying the inverse Fourier transform we readily obtain
the existence of an F−solution of (1) in C1

(
[0, τ ∗] , L∞ (

R
d
))

from the existence of
the solution of Eq. (3) in C1

(
[0, τ ∗] , L1

)
. The existence of F-solutions in spaces of

spatially smooth functions can be derived by replacing Lemma 25 with an estimate
similar to the one in Lemma 50.

Let us recast now the system (118)–(119) into modal components using the projec-
tions �n,ζ (k) as in (11). The first step to introduce elementary modal susceptibilities

χ
(m)
n,ζ ,�ξ having one-dimensional range in C

2J and vanishing if one of its arguments û j

belongs to a (2J − 1)-dimensional linear subspace in C
2J ( j th null-space of χ(m)

n,ζ ,�ξ ).

For example, in the linear case m = 1 when χ(1) acts in C
2J and is presented in

the standard orthonormal basis
{
en,ζ
}

in C
2J by a 2J × 2J matrix with elements

a(1)
ξ ,ξ ′ = a(1)n,ζ ,n′,ζ ′ , where index ξ = n, ζ takes 2J values, the action of elementary

susceptibility χ(1)n,ζ ,n′,ζ ′ on a vector v ∈ C
2J is given by the formula χ(1)n,ζ ,n′,ζ ′v =

a(1)n,ζ ,n′,ζ ′
(
v · en′,ζ ′

)
en,ζ , where

{
en,ζ
}

is the standard orthonormal basis in C
2J . Obvi-

ously χ(1)n,ζ ,n′,ζ ′v = �n,ζ χ
(1)�n′,ζ ′v and χ(1)v =∑n,ζ ,n′,ζ ′ χ(1)n,ζ ,n′,ζ ′v. The general

definition follows.
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Definition 30 (Elementary susceptibilities). Let

�ξ =
(
�n, �ζ
)

∈ {1, . . . , J }m × {−1, 1}m = �m, (n, ζ ) ∈ � (130)

and χ(m)
(

k, �k
) [

û1
(
k′), . . . , ûm

(
k(m)

)]
be the m-linear symmetric tensor (suscepti-

bility) as in (86). We introduce elementary susceptibilities χ(m)
n,ζ ,�ξ

(
k, �k
)

: (C2J
)m →

C
2J ) as m-linear tensors defined for almost all k, �k by the following formula:

χ
(m)
n,ζ ,�ξ

(
k, �k
) [

û1
(
k′), . . . , ûm

(
k(m)

)]
= χ

(m)
n,ζ ,�n,�ζ

(
k, �k
) [

û1
(
k′), . . . , ûm

(
k(m)

)]

= �n,ζ (k) χ(m)
(

k, �k
) [(

�n1,ζ
′
(
k′) û1

(
k′), . . . ,�nm ,ζ

(m)

(
k(m)

(
k, �k
))

ûm

×
(

k(m)
(

k, �k
)))]

. (131)

Then using (82) and the elementary susceptibilities (131) we get

χ(m)
(

k, �k
) [

û1
(
k′), . . . , ûm

(
k(m)

)]

=
∑
n,ζ

∑
�ξ
χ
(m)
n,ζ ,�ξ

(
k, �k
) [

û1
(
k′), . . . , ûm

(
k(m)

)]
. (132)

Consequently the modal components F (m)
n,ζ ,�ξ of the operators F (m) in (119) are m-linear

oscillatory integral operators defined in terms of the elementary susceptibilities (132)
as follows.

Definition 31 (Interaction phase). Using notations from (86) we introduce for �ξ =(
�n, �ζ
)

∈ �m the operator

F (m)
n,ζ ,�ξ (ũ1 . . . ũm) (k, τ ) =

∫ τ

0

∫

Dm

exp

{
iφn,ζ ,�ξ

(
k, �k
) τ 1

�

}

χ
(m)
n,ζ ,�ξ

(
k, �k
) [

ũ1
(
k′, τ 1

)
, . . . , ũm

(
k(m)

(
k, �k
)
, τ 1

)]
d̃(m−1)d �kdτ 1, (133)

with the interaction phase function φ defined by

φn,ζ ,�ξ
(

k, �k
)

= φn,ζ ,�n,�ζ
(

k, �k
)

= ζωn (ζk)− ζ ′ωn1

(
ζ ′k′)− . . .− ζ (m)ωnm

(
ζ (m)k(m)

)
, k(m) = k(m)

(
k, �k
)
.

(134)

Using F (m)
n,ζ ,�ξ in (133) we recast F (m) (um) in the system (118)–(119) as

F (m) [û1 . . . , ûm
]
(k, τ ) =

∑

n,ζ ,�ξ
F (m)

n,ζ ,�ξ
[
û1 . . . ûm

]
(k, τ ), (135)

yielding the following system for the modal components ûn,ζ (k, τ ) as in (11),

ûn,ζ (k, τ ) =
∑

m∈MF

∑
�ξ∈�m

F (m)
n,ζ ,�ξ

(
ûm) (k, τ ) + ĥn,ζ (k), (n, ζ ) ∈ �. (136)
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6. Wavepacket Interaction System

The wavepacket preservation property of the nonlinear evolutionary system in any of
its forms (1), (3), (118), (123), (136) is not easy to see directly. It turns out though that
dynamics of wavepackets is well described by a system in a larger space E2N based on
the original equation (118) in the space E . We call it a wavepacket interaction system,
which is useful in three ways: (i) the wavepacket preservation is quite easy to see and
verify; (ii) it can be used to prove the wavepacket preservation for the original nonlinear
problem; (iii) it can be used to study more subtle properties of the original problem, such
as NLS approximation. We start with the system (118) where ĥ (k) is a multiwavepac-
ket with a given nk-spectrum S = {(k∗l , nl), l = 1, . . . , N } as in (31) and k-spectrum
KS = {k∗i , i = 1, . . . , |KS|} as in (32).

When constructing the wavepacket interaction system it is convenient to have rele-
vant functions to be explicitly localized about the k-spectrum KS of the initial data. We
implement that by making up the following cutoff functions based on (25), (26),

�i,ϑ (k) = � (k, ϑk∗i )

= �
(
β−(1−ε) (k − ϑk∗i )

)
, k∗i ∈ KS, i = 1, . . . , |KS|, ϑ = ± (137)

with ε as in Definition 1 and β > 0 small enough to satisfy

β1/2 ≤ π0, where π0 = π0 (S) <
1

2
min

k∗i ∈KS
dist {k∗i , σ bc} . (138)

In what follows we use notations from (92) and

�l = (l1, . . . , lm) ∈ {1, . . . , N }m, �ϑ =
(
ϑ ′, . . . , ϑ(m)

)
∈ {−1, 1}m, �λ =

(�l, �ϑ
)

∈ �m,

(139)

�n = (n1, . . . , nm) ∈ {1, . . . , J }m, �ζ ∈ {−1, 1}m, (140)

�ξ =
(
�n, �ζ
)

∈ �m , �k =
(

k′, . . . ,k(m)
)

∈ R
m, where �m as in (130).

Based on the above we introduce now the wavepacket interaction system,

ŵl,ϑ (·) = �
(·, ϑk∗il

)
�nl ,ϑ (·)F

⎛
⎝ ∑

(l ′,ϑ ′)∈�
ŵl ′,ϑ ′

⎞
⎠

+�
(·, ϑk∗il

)
�nl ,ϑ (·) ĥ, (l, ϑ) ∈ �, (141)

�w = (ŵ1,+, ŵ1,−, . . . , ŵN ,+, ŵN ,−
) ∈ E2N , ŵl,ϑ ∈ E, (l, ϑ) ∈ �,

with � (·, ϑk∗i ),�n,ϑ as in (137), (11), F defined by (118), and the norm in E2N

defined based on (17) by the formula

‖ �w‖E2N =
∑
l,ϑ

∥∥ŵl,ϑ
∥∥

E , E = C
(

[0, τ ∗] , L1
)
.

The index (l, ϑ) which takes 2N values labels equations and variables, the right-hand
side of (141) is well-defined for all �w ∈ E2N and the equality (141) is understood
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as equality of elements of E2N . We also use the following concise form of the wave
interaction system (141):

�w = F� ( �w) + �h� , where (142)

�h� =
(
�i1,+�n1,+ĥ, �i1,−�n1,−ĥ, . . . , �iN ,+�nN ,+ĥ, �iN ,−�nN ,−ĥ

)
∈ E2N .

The following lemma is analogous to Lemmas 25, 26.

Lemma 32. Polynomial operator F� ( �w) is bounded in E2N , F� (0) = 0, and it satis-
fies the Lipschitz condition

‖F� ( �w1)− F� ( �w2)‖E2N ≤ Cτ ∗ ‖ �w1 − �w2‖E2N , (143)

where C depends only on Cχ as in (88), on the degree of F and on ‖ �w1‖E2N +‖ �w2‖E2N ,
and it does not depend on β and �.

Proof. We consider every operatorF (m)
n,ζ ,�ξ ( �w)defined by (133) and prove its boundedness

and the Lipschitz property as in Lemma 25 using the inequality
∣∣∣exp

{
iφn,ζ ,�ξ

τ 1
�

}∣∣∣ ≤ 1

and estimates (25), (88). Note that the integration in τ 1 yields the factor τ ∗ and conse-
quent summation with respect to n, ζ , �ξ yields (143). ��

Lemma 32 and the contraction principle as in Lemma 27 yield the following state-
ment.

Theorem 33. Let
∥∥∥�h�

∥∥∥
E2N

≤ R. Then there exists R1 > 0 and τ ∗ > 0 such that

Eq. (141) has a solution �w ∈ E2N which satisfies ‖ �w‖E2N ≤ R1 and such a solution is
unique.

Lemma 34. Every function ŵl,ζ (k, τ ) corresponding to the solution of (142) from
E2N is a wavepacket with nk-pair (k∗l , nl) with the degree of regularity which can be
any s > 0.

Proof. Note that according to (137) and (142) the function

ŵl,ϑ (k, τ ) = �
(
k, ϑk∗il

)
�nl ,ϑF (k, τ ), ‖F (τ )‖L1 ≤ C, 0 ≤ τ ≤ τ ∗

involves the factor �l,ϑ (k) = �
(
β−(1−ε) (k − ϑk∗l)

)
where ε is as in Definition 1.

Hence,

�n,ϑ ′ŵl,ϑ (k, τ ) = 0 if n �= nl or ϑ ′ �= ϑ, (144)

ŵl,ϑ (k, τ ) = �
(
k, ϑk∗il

)
ŵl,ϑ (k, τ ), ŵl,ϑ (k, τ ) = 0 if |k − ϑk∗l | ≥ β1−ε,

(145)

and, consequently, Definition 1 for ŵl,ϑ is satisfied with D̂h = 0 for any s > 0 and
C ′ = 0 in (30). ��
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Now we would like to show that if ĥ is a multiwavepacket, then the function

ŵ (k, τ ) =
∑

(l,ϑ)∈�
ŵl,ϑ (k, τ ) =

∑
λ∈�

ŵλ (k, τ ) (146)

is an approximate solution of Eq. (123) (see notation (92)). To do that we introduce

�∞ (k) = 1 −
∑
ϑ=±

|KS |∑
i=1

� (k, ϑk∗i ) = 1 −
∑
ϑ=±

∑
k∗i ∈KS

�

(
k − ϑk∗i

β1−ε

)
. (147)

Expanding the m-linear operator F (m)
((∑

l,ϑ ŵl,ϑ
)m) and using notations (92), (93)

we get

F (m)

⎛
⎝
⎛
⎝∑

l,ϑ

ŵl,ϑ

⎞
⎠

m⎞
⎠ =

∑
�λ∈�m

F (m) ( �w�λ
)
, where (148)

�w�λ = ŵλ1 . . . ŵλm ,
�λ = (λ1, . . . , λm) ∈ �m . (149)

The next statement shows that (146) defines an approximate solution to the integrated
evolution equation (118).

Theorem 35. Let ĥ be a multi-wavepacket with resonance invariant nk-spectrum S with
regularity degree s, �w be a solution of (142) and ŵ (k, τ ) be defined by (146). Let

D̂
(
ŵ
) = ŵ − F (ŵ)− ĥ. (150)

Then there exists β0 > 0 such that we have the estimate
∥∥∥D̂
(
ŵ
)∥∥∥

E
≤ C� + Cβs, if 0 < � ≤ 1, β ≤ β0. (151)

Proof. Let

F− (ŵ) =
⎛
⎝1 −

∑
l,ϑ

�il ,ϑ�nl ,ϑ

⎞
⎠F (ŵ), ĥ− = ĥ −

∑
l,ϑ

�il ,ϑ�nl ,ϑ ĥ. (152)

Summation of (141) with respect to l, ϑ yields

ŵ =
∑
l,ϑ

�il ,ϑ�nl ,ϑF (ŵ) +
∑
l,ϑ

�il ,ϑ�nl ,ϑ ĥ.

Hence, from (141) and (150) we obtain

D̂
(
ŵ
) = ĥ− − F− (ŵ). (153)

Using (28) and (30) we consequently obtain
∥∥∥�nl ,ϑ ĥi

∥∥∥
L1

≤ Cβs if nl �= ni ;
∥∥∥�il ,ϑ ĥi

∥∥∥
L1

≤ Cβs if k∗il �= k∗i ,
∥∥∥ĥ−

∥∥∥
E

≤ C1β
s . (154)
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Now, to show (151) it is sufficient to prove that
∥∥F− (ŵ)∥∥E ≤ C2�. (155)

Obviously,

F− (ŵ) =
⎛
⎝1 −

∑
l,ϑ

�il ,ϑ�nl ,ϑ

⎞
⎠∑

m

F (m) (ŵm). (156)

Note that ∑
l,ϑ

�il ,ϑ�nl ,ϑ =
∑
ϑ=±

∑
(n,k∗)∈S

� (·, ϑk∗)�n,ϑ . (157)

Using (82) and (147) we consequently obtain
∑
ϑ=±

∑
(n,k∗)∈�

� (·, ϑk∗)�n,ϑ +�∞ = 1, (158)

⎛
⎝1 −

∑
l,ϑ

�il ,ϑ�nl ,ϑ

⎞
⎠ = �∞ +

∑
ϑ=±

∑
(n,k∗)∈�\S

� (·, ϑk∗)�n,ϑ , (159)

with � defined in (90). Let us expand now F (m)
(
ŵm
)

using (148). According to (156)
and (159) to prove (155) it is sufficient to prove that for every string �λ ∈ �m the
following inequalities hold:

∥∥∥�∞�n,ϑF (m) ( �w�λ
)∥∥∥ ≤ C3� for (n, ϑ) ∈ �, and (160)

∥∥∥� (·, ϑk∗)�n,ϑF (m) ( �w�λ
)∥∥∥ ≤ C3�, if (n,k∗) ∈ � \ S. (161)

We will use (144) and (145) to obtain the above estimates. According to (135)

F (m) [ �w�λ
]
(k, τ ) =

∑
n,ζ

∑
�ξ

F (m)
n,ζ ,�ξ

[
ŵλ1 . . . ŵλm

]
(k, τ ). (162)

Note that according to (144) if λi = (l, ϑ ′)

ŵλi = �n,ϑ ŵλi , if n = nl and ϑ ′ = ϑ. (163)

Let us introduce the notation

�n
(�l
)

= (nl1 , . . . , nlm

)
, �ξ

(�λ
)

=
(
�n
(�l
)
, �ϑ
)
, for �λ =

(�l, �ϑ
)

∈ �m . (164)

Since
�n′,ϑ�n,ϑ ′ = 0, if n �= n′ or ϑ ′ �= ϑ, (165)

then (163) implies

F (m)
n,ζ ,�ξ

[
ŵλ1 . . . ŵλm

] = 0 if �ξ =
(
�n, �ζ
)

�= �ξ
(�λ
)
, and, hence,

F (m) [ �w�λ
]
(k, τ ) =

∑
n,ζ

F (m)

n,ζ ,�ξ
(�λ
) [ŵλ1 . . . ŵλm

]
(k, τ ), (166)
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where we use notation (93), (164). Note also that

�n′,ϑF (m)
n,ζ ,�ξ = 0 if n′ �= n or ϑ �= ζ , (167)

and, hence, we have nonzero �n′,ϑF (m)
n,ζ ,�ξ

( �w�λ
)

only if

�ξ = �ξ
(�λ
)
, n′ = n, ϑ = ζ . (168)

By (133)

F (m)

n,ζ ,�ξ
(�λ
) ( �w�λ

)
(k, τ ) =

∫ τ

0

∫

Dm

exp

{
iφ

n,ζ ,�ξ
(�λ
)
(

k, �k
) τ 1

�

}
(169)

χ
(m)

n,ζ ,�ξ
(�λ
)
(

k, �k
) [

ŵλ1

(
k′, τ 1

)
, . . . , ŵλm

(
k(m)

(
k, �k
)
, τ 1

)]
d̃(m−1)d �kdτ 1,

Now we use (145) and notice that according to the convolution identity in (86),

∣∣ŵλ1

(
k′, τ 1

)∣∣ · . . . ·
∣∣∣ŵλm

(
k(m)

(
k, �k
)
, τ 1

)∣∣∣ = 0 if

∣∣∣∣∣k −
∑

i

ϑ i k∗li

∣∣∣∣∣ ≥ mβ1−ε . (170)

Hence the integral (169) is nonzero only if
(

k, �k
)

belongs to the set

Bβ =
{(

k, �k
)

:
∣∣∣k(i) − ϑ i k∗li

∣∣∣ ≤ β1−ε, i = 1, . . . ,m,

∣∣∣∣∣k −
∑

i

ϑ i k∗li

∣∣∣∣∣ ≤ mβ1−ε
}
.

(171)
We will prove now that if (n,k∗i ) /∈ S, then for small β one of the following alternatives
holds:

either � (·, ϑk∗i )�n′,ϑF (m)
n,ζ ,�ξ

( �w�λ
) = 0, (172)

or (168) holds and
∣∣∣φn,ζ ,�ξ

(
k, �k
)∣∣∣ ≥ c > 0 for

(
k, �k
)

∈ Bβ. (173)

Note that since φn,ζ ,�ξ
(

k, �k
)

is smooth, then using notation (94) we get

∣∣∣φn,ζ ,�ξ
(

k, �k
)

− φn′,ζ ,�ξ
(

k∗∗, �k∗
)∣∣∣ ≤ Cβ1−ε for

(
k, �k
)

∈ Bβ, (174)

�ϑ = (ϑ1, . . . , ϑm), k∗∗ = ζ
∑

i

ϑ i k∗li = ζκm

(�ϑ, �l
)
.

Hence the alternative (173) holds if

φn,ζ ,�ξ
(

k∗∗, �k∗
)

�= 0, (175)

and, consequently, it suffices to prove that either (172) or (175) holds. Combining (171)
with � (k, ϑk∗i ) = 0 for |k − ϑk∗i | ≥ β1−ε we find that �i,ϑF (m)

[ �w�λ
]

can be non-

zero for small β only in a small neighborhood of a point ζκm

(�ϑ, �l
)

∈ [S]K ,out, and

that is possible only if

k∗∗ = ζκm

(�ϑ, �l
)

= ϑk∗i , k∗i ∈ KS . (176)
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Let us show that the equality

φn,ζ ,�ξ
(

k∗∗, �k∗
)

= 0 (177)

is impossible for k∗∗ as in (176) and n′ = n as in (167), keeping in mind that (n,k∗i ) /∈ S.
It follows from (99) and (134) that Eq. (177) has the form of the resonance equation
(100). Since nk-spectrum S is resonance invariant, in view of Definition 18 the resonance
equation (177) may have a solution only if k∗∗ = k∗i , i = il , n = nl , with

(
nl ,k∗il

) ∈ S.
Since (n,k∗i ) /∈ S that implies (177) does not have a solution and, hence, (175) holds
when (n,k∗i ) /∈ S. Notice that Theorem 33 and (121) yield bounds

∥∥ŵλi

∥∥
E ≤ R1,

∥∥∂τ ŵλi

∥∥
E ≤ C.

These bounds combined with Lemma 36, proven below, imply that if (175) holds
then (161) holds. Now let us turn to (160). According to (147) and (170) the term

�∞�n′,ϑF (m)
( �w�λ
)

can be non-zero only if ζκm

(�λ
)

= k∗∗ /∈ KS . Since nk-spec-

trum S is resonance invariant we conclude as above that inequality (175) holds in this

case as well. The fact that the set of all κm

(�λ
)

is finite, combined with inequality

(175), imply (173) for sufficiently small β. Using Lemma 36 as above we derive (160).
Hence, all terms in the expansion (156) are either zero or satisfy (160) or (161) implying
consequently (155) and (151). ��

Here is the lemma used in the above proof.

Lemma 36. Assume that

∣∣∣�i,ϑ ′�n′,ζ χ
(m)
n,ζ ,�ξ

(
k, �k
) [

ŵλ1

(
k′, τ 1

)
, . . . , ŵλm

(
k(m)

(
k, �k
)
, τ 1

)]∣∣∣=0 for
(

k, �k
)
∈Bβ,

and
∣∣∣φn,ζ ,�ξ

(
k, �k
)∣∣∣ ≥ ω∗ > 0 for

(
k, �k
)
/∈ Bβ, with Bβ as in (171). (178)

Then

∥∥∥� (·, ϑ ′k∗i
)
�n′,ζF (m)

n,ζ ,�ξ
( �w�λ
)∥∥∥

E
≤ (179)

4�

ω∗

∥∥∥χ(m)
∥∥∥
∏

j

∥∥ŵλ j

∥∥
E

+
2�τ ∗
ω∗

∥∥∥χ(m)
∥∥∥
∑

i

∥∥∂τ ŵλi

∥∥
E

∏
j �=i

∥∥ŵλ j

∥∥
E
.

Proof. Notice that the oscillatory factor in (133) equals

exp

{
iφ
(

k, �k
) τ 1

�

}
= �

iφ
(

k, �k
)∂τ 1 exp

{
iφ
(

k, �k
) τ 1

�

}
.
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Denoting φn,ζ ,�ξ = φ, �i,ϑ ′�n′,ζ χ
(m)
n,ζ ,�ξ = χ

(m)
�η and integrating (133) by parts with

respect to τ 1 we obtain

�
(
k, ϑ ′k∗i

)
�n′,ζF (m)

n,ζ ,�ξ
( �w�λ
)
(k, τ )

=
∫

B
�
(
k, ϑ ′k∗i

) �e
iφ
(

k,�k
)
τ
�

iφ
(

k, �k
) χ(m)�η

(
k, �k
)

ŵλ1

(
k′, τ

)
. . . ŵλm

×
(

k(m)
(

k, �k
)
, τ
)

d̃(m−1)d �k

−
∫

B
�
(
k, ϑ ′k∗i

) �

iφ
(

k, �k
)χ(m)�η

(
k, �k
)

ŵλ1

(
k′, 0

)
. . . ŵλm

×
(

k(m)
(

k, �k
)
, 0
)

d̃(m−1)d �k

−
∫ τ

0

∫

B
�
(
k, ϑ ′k∗i

) �e
iφ
(

k,�k
)
τ1
�

iφ
(

k, �k
) χ

(m)
�η
(

k, �k
)
∂τ 1

×
[
ŵλ1

(
k′) . . . ŵλm

(
k(m)

(
k, �k
))]

d̃(m−1)d �kdτ 1, (180)

where B is the set of k(i) for which (171) holds. The relations (88) and (25) imply∣∣∣χ(m)�η
(

k, �k
)∣∣∣ ≤ ∥∥χ(m)∥∥. Using then (178), the Leibnitz formula and (122) we obtain

(179). ��
The main result of this subsection is the next theorem which, when combined with

Lemma 34, implies the wavepacket preservation, namely that the solution ûn,ϑ (k, τ ) of
(136) is a multi-wavepacket for all τ ∈ [0, τ ∗].

Theorem 37. Assume that conditions of Theorem 35 are fulfilled. Let ûn,ϑ (k, τ ) for
n = nl and ŵl,ϑ (k, τ ) be the solutions to respective systems (136), (141), ŵ be defined
by (146). Then there exists β0 > 0 such that

∥∥ûnl ,ϑ −�nl ,ϑ ŵ
∥∥

E ≤ C� + C ′βs for 0 < β ≤ β0. (181)

Proof. Note that ûn,ϑ = �n,ϑ û where û is a solution of (118) and, according to The-
orem 28,

∥∥û
∥∥

E ≤ 2R. Comparing Eqs. (118) and (150), which are û = F (û) + ĥ and

ŵ = F (ŵ) + ĥ + D̂
(
ŵ
)
, we find that Lemma 27 can be applied. Then we notice that

by Lemma 26 F has the Lipschitz constant CFτ ∗ for such û. Taking CFτ ∗ < 1 as in
Theorem 28 we obtain (181) from (128). ��

Notice that Theorem 5 is a direct corollary of Theorem 37 and Lemma 34. The
following corollary shows that inequality (181) and, therefore, Theorems 5 and 3 on

preservation of wavepackets hold in the case when the coefficients of operator F̂
(

Û
)

in

(3), (86) regularly depends on small �, F̂
(

Û
)

= F̂
(

Û, �
)

.

Corollary 38 (Parameter dependent nonlinearity). Assume that conditions of The-
orem 35 are fulfilled. Consider a perturbed Eq. (118) û (k, τ ) = F (û) (k, τ ) +
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F1
(
û, �

)
(k, τ )+ĥ (k), where operator F1

(
û, �

)
satisfies the inequality

∥∥F1
(
û, �

)∥∥
E ≤

C�q for
∥∥û
∥∥

E ≤ 2R with some q, 0 < q ≤ 1. Let ŵl,ϑ (k, τ ) be the solution of (141).
Then

∥∥�n,ϑ û − ŵl,ϑ
∥∥

E ≤ C�q + C ′βs .

Proof. The statement follows from (181) and Lemma 27. ��
The following theorem shows that any multi-wavepacket solution to (118) yields a

solution to the wavepacket interaction system (141).

Theorem 39. Let û (k, τ ) be a solution of (118) and assume that û (k, τ ) and ĥ (k) are
multiwavepackets with nk-spectrum S = {(nl ,k∗l), l = 1, . . . , N } and the regularity
degree s. Let also �il ,ϑ = �il ,ϑ be defined by (137). Then functions ŵ′

l,ϑ (k, τ ) =
�il ,ϑ�nl ,ϑ û (k, τ ) are a solution to the system (141) with ĥ (k) replaced by ĥ′ (k, τ )
satisfying ∥∥∥ĥ (k)− ĥ′ (k, τ )

∥∥∥
L1

≤ Cβs, 0 ≤ τ ≤ τ ∗. (182)

Proof. Multiplying (118) by �il ,ϑ�nl ,ϑ we get

ŵ′
l,ϑ = �

(·, ϑk∗il

)
�nl ,ϑF (û) (k, τ ) +�

(·, ϑk∗il

)
�nl ,ϑ ĥ (k), ŵ′

l,ϑ

= �
(·, ϑk∗il

)
�nl ,ϑ û. (183)

Since û (k, τ ) is a multiwavepacket with regularity s we have

∥∥û (·, τ )− ŵ′ (·, τ )∥∥L1 ≤ Cεβ
s where ŵ′ (·, τ ) =

∑
l,ϑ

�
(·, ϑk∗il

)
û (·, τ ). (184)

Let us recast (183) in the form

ŵ′
l,ϑ = �

(·, ϑk∗il

)
�nl ,ϑF (ŵ′) (k, τ ) +�

(·, ϑk∗il

)
�nl ,ϑ

[
ĥ (k) + ĥ′′ (k, τ )

]
,

(185)

ĥ′′ (k, τ ) = [F (û)− F (ŵ′)] (k, τ ).

Denoting ĥ (k) + ĥ′′ (k, τ ) = ĥ′ (k, τ ) we observe that (185) has the form of (141) with
ĥ (k) replaced by ĥ′ (k, τ ). Inequality (182) follows then from (184) and (124). ��

7. Reduction of Wavepacket Interaction System to a Minimal Interaction System

Our goal in this section is to substitute the wavepacket interaction system (141) with
a simpler (minimal) interaction system which describes the evolution of wavepackets
with the same accuracy. We fix the nk-spectrum S = {(nl ,k∗l), l = 1, . . . , N } of the
initial multiwavepacket and assume everywhere below that it is resonance invariant.

The minimal interaction system is built based on operators L and F̂
(

Û
)

and on S. We

want the minimal interaction system to satisfy the following requirements. Firstly, the
approximation of solutions of (141) by solutions of the minimal interaction system of
the order (µ, ν) has to be of the order � in suitable region of parameters (�, β) (which
is larger for larger µ, ν). Secondly, the minimal interaction system of the order (µ, ν)
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should be defined by S and by the values of L (k) and its derivatives of the order up to

µ and by the values χ(m)
(

k, �k
)

and its derivatives of order up to ν at k∗l ∈ SK .

The construction of the minimal interaction system consists of the following consec-
utive steps: (i) introduction of a time averaged wavepacket interaction system obtained
by discarding non-resonant terms in the nonlinearity; (ii) reduction of the system for
vector components v̂l,ϑ to an equivalent one for scalar amplitudes v̂l,ϑ ; (iii) change of
variables k = ϑk∗l + βη in the equation for v̂l,ϑ resulting in a regular dependence of
coefficients on small βη; (iv) substitution of the general dependence on βη in the linear
part with a certain polynomial one of the order µ, and the general dependence on βη of
coefficients of the nonlinearity with a certain trigonometric polynomial of the order ν;
(v) substitution of the cutoff functions �

(·, ϑk∗il

)
from (141), which were preserved

up to this step, with 1.
As a result we obtain a minimal interaction system with weakly universal nonlinear-

ity, which in the simplest case, where S is just a single element (k∗, n), is equivalent
to the classical NLS equation, and in the case when S consists of only two elements
(k∗, n), (−k∗, n), is equivalent to the classical coupled modes system.

7.1. Time averaged wavepacket interaction system. Here we modify the wavepacket
interaction system (141), substituting its nonlinearity with a certain universal or condi-
tionally universal one obtained by the time averaging, and prove that this substitution
produces a small error of order �. As the first step we recast (141) in a slightly different
form by using expansions (148), (162) together with (166) and (167) and writing the
nonlinearity in Eq. (141) in the form

�
(·, ϑk∗il

)
�nl ,ϑF (·, τ ) =

∑
m∈MF

∑
�λ∈�m

�
(·, ϑk∗il

)F (m)

nl ,ϑ,�ξ
(�λ
) ( �w�λ

)
, �λ =

(�l, �ζ
)
,

F (m)

nl ,ϑ,�ξ
(�λ
) ( �w�λ

)
(k, τ ) = F (m)

n,ζ ,�n,�ζ
[
ŵλ1 . . . ŵλm

]
(k, τ ), �n = �n

(�l
)
, (n, ζ ) = (nl , ϑ),

with F (m)
n,ζ ,�n,�ζ as in (133) and �n

(�l
)

as in (164). Consequently, the wavepacket interaction

system (141) can be written in an equivalent form

ŵl,ϑ=
∑

m∈MF

∑
�λ∈�m

�
(·, ϑk∗il

)F (m)

nl ,ϑ,�ξ
(�λ
) ( �w�λ

)
+�
(·, ϑk∗il

)
�nl ,ϑ ĥ, l=1, . . . N , ϑ=±.

(186)
The construction of the above mentioned time averaged equation reduces to discarding
certain terms in the original system (186). First we introduce the following sets of indices
related to the resonance equation (100) and �m defined by (99):

�m
nl ,ϑ

=
{�λ =

(�l, �ζ
)

∈ �m : �m

(
ϑ, nl , �λ

)
= 0
}
, (187)

and then the time-averaged nonlinearity by

Fav,nl ,ϑ ( �w) =
∑

m∈MF

F (m)
nl ,ϑ

, F (m)
nl ,ϑ

=
∑

�λ∈�m
nl ,ϑ

F (m)

nl ,ϑ,�ξ
(�λ
) ( �w�λ

)
. (188)
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Note that the nonlinearity F (m)
av,nl ,ϑ

( �w) can be obtained from F (m)
nl ,ϑ

by the averaging

formula (70) where AT is defined by formula (69) with frequencies φ j = ωn j

(
k∗i j

)
.

Consequently, the desired equation with time-averaged nonlinearity is

v̂l,ϑ = �
(·, ϑk∗il

)Fav,nl ,ϑ (�v) +�
(·, ϑk∗il

)
�nl ,ϑ ĥ, l = 1, . . . N , ϑ = ±, (189)

which similarly to (142) we recast concisely as

�v = Fav,� (�v) + �h� . (190)

The following lemma is analogous to Lemmas 32, 26.

Lemma 40. Operator Fav,� (�v) is bounded for bounded �v ∈ E2N , Fav,� (0) = 0.
Polynomial operator Fav,� (�v) satisfies the Lipschitz condition

∥∥Fav,� (�v1)− Fav,� (�v2)
∥∥

E2N ≤ Cτ ∗ ‖�v1 − �v2‖E2N , (191)

where C depends only on Cχ as in (88), on the power of F and on ‖�v1‖E2N + ‖�v2‖E2N ,
and, in particular, it does not depend on β.

From Lemma 40 and the contraction principle we obtain the following theorem sim-
ilarly to Theorem 33.

Theorem 41. Let
∥∥∥�h�

∥∥∥
E2N

≤ R. Then there exists R1 > 0 and τ ∗ > 0 such that

Eq. (190) has a solution �v ∈ E2N satisfying ‖�v‖E2N ≤ R1, and such a solution is
unique.

Theorem 42. Let v̂l,ϑ (k, τ ) be the solution of (189) and ŵl,ϑ (k, τ ) be the solution of
(141). Then the v̂l,ϑ (k, τ ) is a wavepacket satisfying (144), (145) with ŵ replaced by v̂.
In addition to that, there exists β0 > 0 such that

∥∥v̂l,ϑ − ŵl,ϑ
∥∥

E ≤ C�, l = 1, . . . , N ; ϑ = ±, for 0 < � ≤ 1, 0 < β ≤ β0.

(192)

Proof. Formula (144), (145) for v̂l,ϑ (k, τ ) follow from (189). We note that �w is an
approximate solution of (189), namely we have an estimate for D̂av

(
ŵ
) = ŵ−Fav,�−ĥ�

which is similar to (150), (151):

∥∥∥D̂av
(
ŵ
)∥∥∥ =

∥∥∥ŵ − Fav,� − ĥ
∥∥∥

E
≤ C�, if 0 < � ≤ 1, β ≤ β0. (193)

The proof of (193) is similar to the proof of (155) with minor simplifications thanks to
the absence of terms with �∞. Using (193) we apply Lemma 27 and obtain (192). ��
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7.2. Averaged system for scalar amplitudes. Now we recast (189) in the form of an
equivalent system of scalar equations for amplitudes v̂l,ϑ = v̂λ of solutions v̂λl defined
based on (11), namely

v̂λl (k) = �
(

k, ζ (l)k∗il

)
�nl ,ζ

(l) (k) v̂λl (k) = v̂l,ζ (l) (k) gnl ,ζ
(l) (k). (194)

Note that according to (145) support of v̂l,ζ (l) is localized near ζk∗il , and we can assume
that gnl ,ζ

(l) (k) depend smoothly on k near this point. Multiplying (189) by gnl ,ζ l (k)
(with the standard scalar product in C

2 j ) and using (194) we obtain the following system
of scalar amplitude equations:

v̂l,ϑ = �
(·, ϑk∗il

)
fav,nl ,ϑ (�v) +�

(·, ϑk∗il

)
ĥnl ,ϑ , l = 1, . . . , N , ϑ = ±, where

(195)

ĥnl ,ϑ = gnl ,ϑ ·�nl ,ϑ ĥ, fav,nl ,ϑ (�v) =
∑

m∈MF

∑
�λ∈�m

nl ,ϑ

f (m)
nl ,ϑ,�ξ

(�λ
) (�v�λ

)
. (196)

According to (169) the m-linear operators in the above equation are given by

f (m)
n,ϑ,�ξ

(�v�λ
)
(k, τ ) =

∫ τ

0

∫

Dm

e
iφn,ϑ,�ξ

(
k,�k
)
τ1
� Q(m)

n,ϑ,�ξ
(

k, �k
) m∏

i=1

v̂λi d̃
(m−1)d �kdτ 1, (197)

Q(m)
n,ϑ,�ξ

(
k, �k
)

= gn,ϑ (k) · χ(m)
n,ϑ,�ξ

(
k, �k
) [

gλ1

(
k′), . . . , gλm

(
k(m)

(
k, �k
))]

. (198)

The concise form for the system (195) of scalar equations for amplitudes is

�v = f� (�v) + ĥ�, �v ∈ E2N
sc , (199)

where the components v̂l,ϑ of �v belong to the space Esc of scalar functions with the

norm defined by (17), (18) applied to scalar functions. Note that Q(m)
n,ϑ,�ξ

(
k, �k
)

can be

extended in an arbitrary way as bounded functions for arguments k, �k, where (171) is not
satisfied, for example the extension can be zero, the extension does not affect solutions
of (195) because this equation involves factors �

(·, ϑk∗il

)
and (145) holds.

Lemma 43. Operator f� is bounded for bounded �v ∈ E2N
sc and f� (0) = 0. The

polynomial operator f� (�v) satisfies the Lipschitz condition

‖ f� (�v1)− f� (�v2)‖E2N
sc

≤ Cτ ∗ ‖�v1 − �v2‖E2N
sc
,

where C depends only on Cχ as in (88), on the order of F as a polynomial and on
‖�v1‖E2N + ‖�v2‖E2N , and it does not depend on β.

From Lemma 40 and the contraction principle we obtain the following theorem sim-
ilarly to Theorem 33.

Theorem 44. Let
∥∥∥ĥ�

∥∥∥
E2N

sc

≤ R. Then there exists R1 > 0 and τ ∗ > 0 such that (199)

has a solution �v ∈ E2N
sc satisfying ‖�v‖E2N

sc
≤ R1, and such a solution is unique.
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7.3. Rescaled amplitude equations. According to (145) amplitudes v̂l,ϑ (ζk∗l + η) are
localized about the point η = 0, and to study its behavior in a vicinity of η = 0 we
introduce a group of dilation operators

(
Bβ v̂

)
(η) = βd v̂ (βη), β > 0, (200)

which preserve the L1-norm and commute with the convolution, i.e.
∥∥Bβ v̂

∥∥
L1 = ∥∥v̂∥∥L1 , Bβ v̂ ∗ Bβŵ = Bβ

(
v̂ ∗ ŵ). (201)

We introduce then a rescaled and shifted version of initial data ĥnl ,ϑ in (196) by the
formula

Ĥnl ,ϑ (k) = Bβ ĥnl ,ϑ (k + ϑk∗l), ĥnl ,ϑ (k) = β−d Ĥnl ,ϑ

(
β−1 (k − ϑk∗l)

)
, (202)

where Bβ is defined by (200), |k − ϑk∗l | ≤ β1−ε , and new variables

ηl = β−1 (k − ϑk∗l), l = 1, . . . , N , �η = (η1, . . . , ηN
)
. (203)

In this and the following sections we assume that Ĥnl ,ϑ (β, η) are defined for all η ∈
R

d , including |η| ≥ β−ε . Though (195) involves ĥnl ,ϑ with a cutoff factor, namely
�
(
k, ϑk∗il

)
ĥnl ,ϑ (k) = �

(
k, ϑk∗il , β

1−ε) ĥnl ,ϑ (k) as in (26), we will later use

Ĥnl ,ϑ (β, η) defined for all η, and assume that

∥∥∥(1 −�
(
βεη

))
Ĥnl ,ϑ (β, η)

∥∥∥
L1

≤ Cβs, (204)

where (i) � (βεη) = �
(
η, 0, β−ε) is as in (25), (26); (ii) ε and s are the same as in

Definition 1; (iii) condition (204) is consistent with (29) and (30).
For a solution v̂l,ϑ (k, τ ) of (195) using (145) we introduce the following functions.

ẑl,ϑ (η, τ ) = βd v̂l,ϑ (ϑk∗l + βη, τ ), ẑl,ϑ (η, τ ) = �
(
βεη

)
ẑl,ϑ (η, τ ), η ∈ R

d ,

(205)

which satisfy a rescaled version of (195) provided below. Note that since
(
�n, �ζ
)

= �λ ∈
�m

nl ,ϑ
and the nk-spectrum S is resonance invariant we have κm

(�λ
)

= ∑
i ζ
(i)k∗li =

ζk∗l = ϑk∗l . Since k, �k satisfy the convolution identity (87) the variables η, �η defined
by (203) satisfy a similar identity as well, namely

η =
m∑

i=1

η(i), η(m) (k, �η) = η −
m−1∑
i=1

η(i). (206)

Change of variables (203) in the integral operator fav,nl ,ϑ defined by (197) yields the
following amplitude system for zl,ϑ which is equivalent to (195):

ẑl,ϑ (η) = �
(
βεη

)
fav,nl ,ϑ,β (�z) (η) +�

(
βεη

)
Ĥnl ,ϑ (η), l = 1, . . . N , ϑ = ±.

(207)
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According to (137), (196) and (197),

�
(

k, ϑk∗il , β
1−ε) = �

(
βεη

)
, fav,nl ,ϑ,β (�z) =

∑
m∈MF

f (m)av,nl ,ϑ,β
(�z), (208)

f (m)av,nl ,ϑ,β
(�z) =

∑
�λ∈�m

nl ,ϑ

f (m)
nl ,ϑ,�ξ

(�λ
)
,β

(�z�λ
)
,

f (m)
n,ϑ,�ξ

(�λ
)
,β

(�z�λ
)
(η, τ ) =

∫ τ

0

∫

η′+···+η(m)=η
exp

{
iφ

n,ϑ,�ξ
(�λ
)
(
ϑk∗l + βη, �k∗ + β�η

) τ 1

�

}

(209)

Q(m)

n,ϑ,�ξ
(�λ
)
(
ϑk∗l + βη, �k∗ + β�η

)∏m

i=1
ẑλi

(
η(i)
)

d̃(m−1)d �ηdτ 1.

Note that the condition (171) on the domain of integration takes in the new variables the
form ∣∣∣η(i)

∣∣∣ ≤ β−ε, i = 1, . . . ,m and |η| ≤ mβ−ε . (210)

Finally, we rewrite the amplitude system (207) in the concise form

�z = �
(
βε ·) fav,β (�z) +�

(
βε ·) Ĥβ, �z ∈ E2N

sc . (211)

Let us show now that (211) is of the form of (118) with 2J -component vector û substi-
tuted with 2N -component vector �z, the matrix L (k) substituted with a diagonal matrix
�L with entries ϑωnl (ϑk∗l + βη). For that we introduce the S-averaged tensor Q(m)

av

defined on �z ∈ C
2Nm by the formula

Q(m)
av,n,ϑ (βη, β�η, �z) =

∑
�λ∈�m

n,ϑ

Q(m)

n,ϑ,�ξ
(�λ
)
(
ϑk∗l + βη, �k∗ + β�η

)∏m

i=1
ẑλi (212)

which depends on S through �m
n,ϑ and acts from C

2Nm into C
2N . Note that ẑλi and

Q(m)
n,ϑ,�ξ are scalar factors, ẑλi is a scalar projection in C

2N onto a line along the λth
i

eigenvector of �L . Hence, the right-hand side of (212) is a sum of elementary suscep-
tibilities obtained from Q(m)

av as in (132) and (207) has the form of (136). Note that
non-zero terms in (212) contain products ẑλi which satisfy (100). Therefore, if β = 0

and S is resonance invariant, Q(m)
av has the form of weakly universal nonlinearity; if S is

universally resonance invariant then Q(m)
av has the form of a universal nonlinearity as in

(65).

7.4. Amplitude system with polynomial dispersion relations. Now we introduce an
amplitude system with polynomial dispersion which is similar to (207) and provides
(i) sufficiently accurate approximation to (207); (ii) standard polynomial dependence of
coefficients on η, �η in the sense clarified below. The amplitude system has the form

ûl,ϑ = �
(
βεη

)
f (µ,ν)nl ,ϑ

(�u) +�
(
βεη

)
Ĥnl ,ϑ , l = 1, . . . N , ϑ = ±, (213)

f (µ,ν)nl ,ϑ
(�u) =

∑
m∈MF

∑
�λ∈�m

nl ,ϑ

f (m,µ,ν)
nl ,ϑ,�ξ

(�λ
) (�u�λ

)
, (214)
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where � (βεη) are cutoff-factors defined in (208), (137) and approximations f (m,µ,ν)
nl ,ϑ,�ξ

(�λ
)

for f (m)
nl ,ϑ,�ξ

(�λ
) are defined below. The indices µ = 1, 2, ν = 0, 1 determine the order of

approximation: (i) µ determines the order of approximation of the dispersion relation
by a polynomial of the degreeµ; (ii) ν determines the order of approximation of the sus-
ceptibility coefficients (198) by a trigonometric polynomial of the degree ν. As before,
we recast (213) in a concise form,

�u = �β f (µ,ν) (�u) +�β Ĥ , (215)

where �β (η) = � (βεη). Finally, we eliminate in (213) the cutoff factor � (βεη)
by setting � (βεη) = � (0) = 1, and introduce the amplitude system with weakly
universal nonlinearity and polynomial dispersion without cutoff

ûl,ϑ (η) = f (µ,ν)nl ,ϑ
(�u) (η) + Ĥnl ,ϑ (η), l = 1, . . . N , ϑ = ±, (216)

which can be written in the form of (215) with �β = 1.
Let us turn now to the construction of the approximations. For every nk-pair (k∗l , nl)

we introduce the Taylor polynomials of orderµ of the dispersion relationωnl (k∗l + βη):

γ 1 (k∗l , nl , βη) = ωnl (k∗l) + βω′
nl
(k∗l) η,

γ 2 (k∗l , nl , βη) = γ 1 (k∗l , nl , βη) +
β2

2

(
η, ω′′

nl
(k∗l) η

)
,

and similarly γ 3 for µ = 3. Obviously we have the inequality (see (171))

∣∣ωnl (k∗l + βη)− γ µ (k∗l , nl , βη)
∣∣ ≤ Cβ(µ+1)(1−ε1),

(
k, �k
)

∈ Bβ. (217)

The phase function φn,ζ ,�ξ
(

k, �k
)

, �ξ =
(
�n, �ζ
)

, defined by (134), is approximated then

by a polynomial phase function

φ
(µ)

nl ,ζ ,�ξ
(
ζk∗l , �k∗, βη, β�η

)

= ζγ µ (k∗l , nl , βη)− ζ ′γ µ
(
k∗l1 , n′, βη′)− . . .− ζ (m)γ µ

(
k∗lm , n(m), βη(m)

)
.

(218)

Note that since �ξ = �ξ
(�λ
)

with �λ ∈ �m
nl ,ϑ

defined by (187), Eq. (100) is fulfilled.

Hence, φ(µ)
nl ,ϑ,�ξ

(
ϑk∗l , �k∗, 0, 0

)
= 0 and the function φ1

nl ,ϑ,�ξ depends linearly on η, �η
and φ2

nl ,ϑ,�ξ is quadratic, namely

φ1
nl ,ϑ,�ξ

(
ϑk∗l , �k∗, βη, β�η

)
= βφ1

nl ,ϑ,�ξ
(
ϑk∗l , �k∗, η, �η

)
, (219)

φ2
nl ,ϑ,�ξ

(
ϑk∗l , �k∗, βη, β�η

)
= βφ1

nl ,ϑ,�ξ
(
ϑk∗l , �k∗, η, �η

)
+ β2φ

2,2
nl ,ϑ,�ξ

(
ϑk∗l , �k∗, η, �η

)
.

(220)



Wavepacket Preservation Under Nonlinear Evolution 377

In the case µ = 2 the polynomial phase function involves two parameters �1, �2:

φ2
nl ,ϑ,�ξ

(
ϑk∗l , �k∗, βη, β�η

) τ 1

�

= iφ1
nl ,ϑ,�ξ

(
ϑk∗l , �k∗, η, �η

) τ 1

�1
+ iφ2,2

nl ,ϑ,�ξ
(
ϑk∗l , �k∗, η, �η

) τ 1

�2
, (221)

�1 = �

β
, �2 = �

β2 ; 0 < �1 < ∞, 0 < �2 ≤ ∞, (222)

where �1 and �2 may be large or small depending on the relation between � and β.
Sometimes it is convenient to consider �1 and �2 as independent parameters. If µ = 1
we formally set �2 = ∞, τ 1

�2
= 0. If (171) holds we have the estimate

∣∣∣∣∣∣
e

{
iφµ

nl ,ϑ,�ξ
(
ϑk∗l ,�k∗,βη,β�η

)
τ1
�

}

− e

{
iφnl ,ϑ,�ξ

(
ϑk∗l +βη,�k∗+β�η

)
τ1
�

}∣∣∣∣∣∣
≤Cτ ∗

β(µ+1)(1−ε)

�
, µ=1, 2.

(223)
To ensure that the approximation error is small for given µ we assume that � and β
satisfy

� → 0, β → 0,
β(µ+1)(1−ε)

�
→ 0. (224)

Now we approximate the dependence of Q(m)
n,ζ ,�ξ

(
ϑk∗l + βη, �k∗ + β�η

)
on η, �η given by

(198) by trigonometric polynomials. Zero order approximation with ν = 0 is given by

Q(m,0)
n,ζ ,�ξ

(
ϑk∗l + βη, �k∗ + β�η

)
= Q(m)

n,ζ ,�ξ
(
ϑk∗l , �k∗

)
. (225)

To define the first order approximation we modify the standard Taylor expansion using
trigonometric polynomials instead of algebraic ones. Taking the first derivative with
respect to β at β = 0,

Q(m)′
n,ζ ,�ξ

(
ϑk∗l , η, �k∗, �η

)
= d

dβ

∣∣∣∣
β=0

Q(m)
n,ζ ,�ξ

(
ϑk∗l + βη, �k∗ + β�η

)
,

which obviously is a linear function with respect to η, �η, we express then η in terms of
�η using (206):

Q(m)′
n,ζ ,�ξ

(
ϑk∗l , η, �k∗, �η

)
=

m∑
j=1

q(m), j
n,ζ ,�ξ

(
ϑk∗l , �k∗

)
· η( j), η( j) =

(
η
( j)
1 , . . . , η

( j)
d

)
.

Then the first order approximation is

Q(m,1)
n,ζ ,�ξ

(
ϑk∗l + βη, �k∗ + β�η

)
= Q(m)

n,ζ ,�ξ
(
ϑk∗l , �k∗

)
+

m∑
j=1

q(m), j
n,ζ ,�ξ

(
ϑk∗l , �k∗

)
· sin βη( j),

where sin η( j) =
(

sin η( j)
1 , . . . , sin η( j)

d

)
. An advantage of this approximation is that the

multiplication by sin η( j)
1 is a bounded operator which equals the Fourier transform of a

finite-difference operator whereas the multiplication by η( j)
1 corresponds to the partial
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derivative and is unbounded. Since the original nonlinearity does not involve unbounded
operators, the use of bounded operators is natural and convenient. In fact, it is well known
that the presence of the derivatives in the nonlinearity of NLS-type equations causes well
known technical difficulties, see 14]. In our approach the approximating equation pro-
vides the same accuracy and its nonlinearity involves only bounded finite-difference
operators bypassing those difficulties altogether.

According to Condition 16 the susceptibility is smooth and if (210) holds we have
the following inequality:
∣∣∣Q(m)

n,ζ ,�ξ
(
ϑk∗l + βη, �k∗ + β�η

)
− Q(m,ν)

n,ζ ,�ξ
(
ϑk∗l , �k∗, βη, β�η

)∣∣∣ ≤ Cβ(ν+1)(1−ε1). (226)

We introduce components f (m,µ,ν)
nl ,ϑ,�λ of the weakly universal nonlinearity f (µ,ν) by the

formula

f (m,µ,ν)
nl ,ϑ,�λ

(�z�λ
)
(η, τ ) =

∫ τ

0

∫

η′+···+η(m)=η
e

iφ1
nl ,ϑ,�ξ

(
ϑk∗l ,�k∗,η,�η

)
τ1
�1

+iφ2,2
nl ,ϑ,�ξ

(
ϑk∗l ,�k∗,η,�η

)
τ1
�2

(227)

Q(m,ν)
nl ,ϑ,�ξ

(
ϑk∗l , �k∗

) m∏
i=1

ẑλi

(
η(i)
)

d̃(m−1)d �k dτ 1.

As before, we establish standard properties of the operator f (µ,ν) defined by the above
formula.

Lemma 45. Operator �β f (µ,ν) is bounded for bounded �u ∈ E2N
sc , f� (0) = 0. The

polynomial operator �β f (µ,ν) satisfies the Lipschitz condition

∥∥∥�β f (µ,ν) (�u1)−�β f (µ,ν) (�u2)

∥∥∥
E2N

sc

≤ Cτ ∗ ‖�u1 − �u2‖E2N
sc
, (228)

where C depends only on Cχ as in (88), on the power of F and on ‖�u1‖E2N
sc

+ ‖�u2‖E2N
sc

.
In particular, it does not depend on β ≥ 0 and on 0 < �1 < ∞, 0 < �2 ≤ ∞.

From Lemma 40 and the contraction principle we obtain the following theorem
completely similar to Theorem 33.

Theorem 46. Let
∥∥∥ĥ�

∥∥∥
E2N

sc

≤ R. Then there exists R1 > 0 and τ ∗ > 0 such that

Eq. (190) has a solution �z ∈ E2N
sc satisfying ‖�z‖E2N

sc
≤ R1. Such a solution is unique

and ẑl,ϑ (k, τ ) = 0 if |k| ≥ β−ε .

Theorem 47. Let ûl,ϑ (k, τ ) be a solution to (213) and ẑl,ϑ (k, τ ) be the solution of
(211). Then the following inequality holds:

∥∥ûl,ϑ − ẑl,ϑ
∥∥

Esc
≤ Cβ(µ+1)(1−ε) + C�−1β(µ+1)(1−ε), l = 1, . . . , N ; ϑ = ±,

(229)
for all 0 < � ≤ 1 and 0 < β ≤ β0, where ε is the same as in Definition 1, β0 is
sufficiently small.
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Proof. To obtain (229) we note that ul,ϑ is an approximate solution of (211), namely

�u −�β f (µ,ν) (�u)− ĥ� = D̂ where D̂ is small.

To estimate
∥∥∥D̂
∥∥∥ observe that integrals involving �u have the integration domain as in

(171). Hence, using (226) and (223) we obtain
∥∥∥D̂
∥∥∥

E2N
sc

≤ Cβ(µ+1)(1−ε) + C�−1β(µ+1)(1−ε),

and applying Lemma 27 we get (229). ��

7.5. Decay of solutions and elimination of cutoff factors. In this subsection we show
how to remove the cutoff function in (213) and to obtain the averaged interaction sys-
tem with a weakly universal nonlinearity. If µ = 1, ν = 0 and the nk-spectrum S is
resonance-invariant, the amplitude system coincides with the system (62) with a weakly
universal nonlinearity. For µ > 1 or ν > 0 the amplitude system involves additional
terms. In particular, if µ = 2, ν = 0 and S = {(k∗, n)} is just a single element then
the linear part has the second order and the nonlinearity is universal, and the amplitude
system turns into the classical NLS system:

∂τuζ = ζ
1

�
γ 2 (k∗, n,−iζβ∇rη) + bζu2

ζu−ζ , uζ (0) = Ĥζ , ζ = ±.

This system is equivalent to (51) when Ĥ− = Ĥ∗
+ , b− = b∗

+, u− = u∗
+. When ν > 0 the

nonlinearity involves additional terms with finite difference operators.
The possibility to remove cutoff functions is based on the fast decay of û (k) as

|k| → ∞, which is equivalent to high smoothness of u (r). The factor �β can be
replaced by 1 with a small error when data Ĥ (k) decay sufficiently fast. To describe
the decay we introduce weighted Banach spaces of scalar functions Ĥ (k) described as
follows.

Definition 48 (Weight function). For a ≥ 0 we call a positive function ψ (r), r ≥ 0, a
weight function from class W (a) if it satisfies the following conditions: (i) ψ (0) > 0,
ψ (r1) ≥ ψ (r2) for r1 ≥ r2 ≥ 0; (ii) ψ (r1 + r2) ≤ ψ (r1) + ψ (r2) + C, where C does
not depend on r1, r2 (ψ is sublinear); (iii) ψ (r)− a ln r ≥ C ′ > 0 for all r > 0 (ψ (r)
is superlogarithmic).

We introduce L1 (ψ) as a space of scalar functions Ĥ (k), k ∈ R
d with the norm

∥∥∥Ĥ
∥∥∥

L1(ψ)
=
∫

Rd
eψ(|k|)

∣∣∣Ĥ (k)
∣∣∣ dk. (230)

For vector-functions we use the same formula with Euclidean norm |·|. In the simplest
case of ψ (r) = a ln (1 + r) we have ψ ∈ W (a) and obtain L1 (ψ) = L1,a with the
norm (19). If the weight function belongs to W (a) for all a the space L1 (ψ) consists of
the Fourier transforms of infinitely smooth functions. The following lemma shows that
L1 (ψ) is closed with respect to the convolution.
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Lemma 49. Let Ĥ1, Ĥ2 ∈ L1 (ψ) and

Ĥ3 (k) =
∫

Rd
Ĥ1
(
k − k′) Ĥ2

(
k − k′) dk′.

Then
∥∥∥Ĥ3 (k)

∥∥∥
L1(ψ)

≤ C
∥∥∥Ĥ1 (k)

∥∥∥
L1(ψ)

∥∥∥Ĥ1 (k)
∥∥∥

L1(ψ)
. (231)

Proof. Using Definition 48 (ii) we obtain

eψ(|k|)
∣∣∣Ĥ3 (k)

∣∣∣ ≤
∫

Rd
eψ(|k|)

∣∣∣Ĥ1
(
k − k′)∣∣∣

∣∣∣Ĥ2
(
k′)∣∣∣ dk′

≤ eC
∫

Rd
eψ(|k′|)eψ(|k−k′|) ∣∣∣Ĥ1

(
k − k′)∣∣∣

∣∣∣Ĥ2
(
k′)∣∣∣ dk′.

Applying Young’s inequality (122) we obtain
∫

Rd
eψ(|k|)

∣∣∣Ĥ3 (k)
∣∣∣ dk ≤ eC

∫

Rd
eψ(|k|)

∣∣∣Ĥ1 (k)
∣∣∣ dk′

∫

Rd
eψ(|k|)

∣∣∣Ĥ2 (k)
∣∣∣ dk′,

implying (231). ��
Let us introduce the norm in the space Esc (ψ) by the formula (17)

∥∥∥Ĥ (·, ·)
∥∥∥

E(ψ)
=
∥∥∥Ĥ (·, ·)

∥∥∥
C([0,τ∗],L1(ψ))

= sup
0≤τ≤τ∗

∫

Rd
eψ(|k|)

∣∣∣Ĥ (k, τ )
∣∣∣ dk. (232)

Using (231) instead of (18) we obtain as in Lemma 25 the following statement.

Lemma 50. Operator �β f (s,ν) in (215) is bounded for bounded �u ∈ E2N
sc (ψ), f (0) =

0, and satisfies the Lipschitz condition
∥∥∥�β f (s,ν) (�u1)−�β f (s,ν) (�u2)

∥∥∥
E2N

sc (ψ)
≤ Cτ ∗ ‖�u1 − �u2‖E2N

sc (ψ)
, (233)

where C depends only on Cχ as in (88), on the power of polynomial f (s,ν) and on
‖�u1‖E2N

sc (ψ)
+ ‖�u1‖E2N

sc (ψ)
and does not depend on β ≥ 0 and on 0 < �1 < ∞,

0 < �2 ≤ ∞.

From Lemma 40 and the contraction principle we obtain the following theorem
completely similar to Theorem 33.

Theorem 51. Let
∥∥∥Ĥ
∥∥∥

E2N
sc (ψ)

≤ R. Then there exists R1 > 0 and τ ∗ > 0 such that

Eq. (215) has a solution �u ∈ E2N
sc (ψ) which satisfies ‖�u‖E2N

sc (ψ)
≤ R1, and such a

solution is unique.

The following lemma shows that � can be replaced by one with a small error.

Lemma 52. Let
∥∥∥Ĥ
∥∥∥

L1(ψ)
≤ C, ψ ∈ W (a), � as in (25). If s > 0, ε > 0 and s

ε
< a,

then (204) holds.
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Proof. We have
∫ (

1 −�
(
βεη

)) ∣∣∣Ĥ (η)

∣∣∣ dη≤
∫

|η|≥β−ε

∣∣∣Ĥ (η)

∣∣∣ dη =
∫

|η|≥β−ε
e−ψ(|η|)

∣∣∣eψ(|η|) Ĥ (η)

∣∣∣ dη

(234)

≤
∫

|η|≥β−ε
e−ψ(β−ε)

∣∣∣eψ(|k|) Ĥ (η)

∣∣∣ dη ≤ βseln(β−ε)s/ε−ψ(β−ε)
∥∥∥Ĥ
∥∥∥

L1(ψ)
.

According to Definition 48 (iii),

ln
(
β−ε) s/ε − ψ

(
β−ε) ≤ a ln

(
β−ε)− ψ

(
β−ε) ≤ C,

and we obtain (204) from (234). ��

Theorem 53. Let
∥∥∥Ĥ
∥∥∥

E2N
sc (ψ)

≤ R, where the weight function ψ belongs to W (a) and

let s
ε
< a. Let �u and �u0 be solutions to respectively the minimal equation with cutoff

factor and without cutoff factor respectively. Then there exists Cs and β0 such that

‖�u − �u0‖E2N
sc (ψ)

≤ Csβ
s, 0 < β ≤ β0. (235)

Proof. We show that �u is an approximate solution to �u0 = f (µ,ν) (�u0) + Ĥ . Namely,

�u =�β f (µ,ν) (�u)+�β Ĥ = f (µ,ν) (�u)+ Ĥ + D̂, D̂ = (�β−1
)

f (µ,ν) (�u)+(�β−1
)

Ĥ .

According to Lemma 49 if �u ∈ E2N
sc (ψ) then f (µ,ν) (�u) ∈ E2N

sc (ψ). Applying Lemma
52 we obtain ∥∥∥D̂

∥∥∥
E2N

sc (ψ)
≤ Cβs, 0 < β ≤ β0. (236)

Lemma 27 combined with (236) yields (235). ��
Now we give the theorem on approximation by solutions of a minimal system without

cutoff.

Theorem 54. Let Ĥl,ζ (k), l = 1, . . . , N be functions bounded in L1 (ψ), where
ψ belongs to W (a), let s

ε
< a. Let ĥl,ζ (k) be defined by (202) and �ĥl,ζ (k) =

�ĥl,ζ (k) gnl ,ζ (k). Let û (k, τ ) be a solution of Eq. (118) with multiwavepacket initial
data of the form (33). Let ul,ϑ (k, τ ) be a solution to the system with a weakly universal
nonlinearity (216) with initial data ul,ϑ (k, 0) = Ĥl,ϑ (k) and

ûmin (k, τ ) =
∑
ϑ

N∑
l=1

β−dul,ϑ

(
β−1 (k − ζk∗il

)
, τ
)

gnl ,ϑ (k).

Then
∥∥û − ûmin

∥∥
E ≤ Cε,sβ

s + Cβ(ν+1)(1−ε) + C�−1β(µ+1)(1−ε) + C�. (237)

Proof. We take û = ∑
ϑ

∑N
l=1 ul,ϑ and estimate

∥∥û (k, τ )− ûmin (k, τ )
∥∥

E applying
subsequently Theorems 37, 42, formulas (194) and (205), Theorem 47 and finally The-
orem 53 to obtain inequality (237). ��
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Note that Theorem 7 is a direct corollary of Theorem 54.

Remark 55. Note that (216) is the Fourier integral version of the following system of
equations based on weakly universal nonlinearity and is slightly more general than (62),

∂τul,ϑ = 1

�1
ω′

nl
(k∗l) · ∇x ul,ϑ +

i

2�2
∇r · ω′′

nl
(k∗l)∇r ul,ϑ + f (µ,ν)nl ,ϑ

(�u, δ�u), (238)

ulϑ |τ=0 = Ĥlϑ , where δi ul (r) = u j (r + ei )− u j (r − ei ),

where �1, �1 are as in (222) and ei is ith standard ort in R
d . In the case when (52) holds

1/�2 is bounded or small and the dependence on the coefficient 1/�2 is regular for small
� and β and uϑ, j (k, τ ) may be looked at as a shape function. When �1 = � and 1/�2
is substituted by zero we obtain an equation exactly of the form (62).

When ν = 0, µ = 1 and the nk-spectrum S is universally resonance invariant as
in Definition 18, the nonlinearities f (1,0)nl ,ϑ,0

are universal of the form (65). When the
nk-spectrum S is resonance invariant but not universally resonance invariant, the non-
linearities are weakly universal, but may be not universal, that allows, in particular, for
the second and the third harmonic generation.
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